System Architecture
Revolutionary AI Beyond Traditional Boundaries
While conventional AI agent frameworks treat agents as stateless functions that process inputs and generate outputs, AgentOS introduces a fundamentally different paradigm: Generalized Mind Instances (GMIs) - adaptive, context-aware entities that learn, evolve, and maintain coherent personalities across interactions. Unlike frameworks that merely wrap LLM calls with tool access, AgentOS creates genuine cognitive architectures with working memory, dynamic persona adaptation, and emergent collaborative intelligence. The framework doesn't just execute tasks; it understands context, adapts to users, and orchestrates multi-agent collaborations that produce insights beyond what any single agent could achieve.
What sets AgentOS apart is its Adaptive Prompting Engine - a sophisticated system that dynamically constructs prompts based on real-time context analysis, user skill assessment, and conversation flow. Instead of static system prompts, AgentOS continuously evolves its approach, selecting from contextual elements, adjusting communication styles, and optimizing token usage for each unique interaction. This isn't merely prompt engineering; it's prompt intelligence - a living system that learns from every interaction and adapts its cognitive approach accordingly.
System Architecture Overview
The Complete AgentOS Ecosystem
Complete Data Flow Architecture
interface DataFlowArchitecture {
// Request Processing Pipeline - Full Implementation
async processRequest(input: UserInput): Promise<Response> {
// Phase 1: Authentication & Validation
const authContext = await this.authenticateRequest(input);
const validatedInput = await this.validateInput(input, authContext);
const rateLimitCheck = await this.checkRateLimit(authContext);
const complianceCheck = await this.checkCompliance(input, authContext);
// Phase 2: Context Assembly
const context = await this.assembleContext({
user: authContext.user,
input: validatedInput,
sessionHistory: await this.loadSessionHistory(authContext.sessionId),
globalContext: await this.loadGlobalContext(),
temporalContext: this.getTemporalContext(),
environmentalContext: await this.getEnvironmentalContext(),
conversationalContext: await this.analyzeConversationalContext(validatedInput)
});
// Phase 3: GMI Selection/Creation
const gmi = await this.getOrCreateGMI({
userId: authContext.user.id,
personaId: context.personaId,
sessionId: authContext.sessionId,
initializationParams: context.gmiInitParams
});
// Phase 4: Memory Retrieval
const relevantMemories = await gmi.retrieveRelevantMemories(context);
context.memories = relevantMemories;
// Phase 5: Knowledge Augmentation
const augmentedKnowledge = await this.augmentKnowledge({
query: validatedInput.content,
context: context,
persona: gmi.persona,
memories: relevantMemories
});
// Phase 6: Prompt Construction
const adaptivePrompt = await gmi.constructAdaptivePrompt({
input: validatedInput,
context: context,
memories: relevantMemories,
knowledge: augmentedKnowledge,
learningState: gmi.getLearningState(),
adaptationState: gmi.getAdaptationState()
});
// Phase 7: Pre-execution Guardrails
const preCheckResult = await this.runPreExecutionGuardrails(
adaptivePrompt,
context
);
if (preCheckResult.blocked) {
return this.createBlockedResponse(preCheckResult);
}
// Phase 8: Tool Orchestration
const toolResults = await this.orchestrateTools({
prompt: adaptivePrompt,
context: context,
availableTools: gmi.getAvailableTools()
});
// Phase 9: LLM Execution
const llmResponse = await this.executeLLM({
prompt: this.enrichPromptWithToolResults(adaptivePrompt, toolResults),
model: this.selectModel(context),
parameters: this.optimizeParameters(context),
streaming: context.streamingEnabled
});
// Phase 10: Post-execution Guardrails
const postCheckResult = await this.runPostExecutionGuardrails(
llmResponse,
context
);
const filteredResponse = postCheckResult.sanitize
? await this.sanitizeResponse(llmResponse, postCheckResult)
: llmResponse;
// Phase 11: Response Processing
const processedResponse = await this.processResponse({
raw: filteredResponse,
context: context,
enrichments: await this.enrichResponse(filteredResponse, context),
formatting: await this.formatResponse(filteredResponse, context.outputFormat)
});
// Phase 12: Memory Update
await gmi.updateMemory({
input: validatedInput,
response: processedResponse,
context: context,
outcome: await this.evaluateOutcome(processedResponse, context),
toolResults: toolResults
});
// Phase 13: Learning Integration
await gmi.learn({
interaction: {
input: validatedInput,
response: processedResponse,
context: context,
toolResults: toolResults
},
feedback: await this.collectFeedback(context),
patterns: await this.detectPatterns(context),
performance: await this.measurePerformance(context)
});
// Phase 14: Evolution Check
if (await gmi.shouldEvolve()) {
await gmi.evolve({
interactionHistory: await gmi.getInteractionHistory(),
performanceMetrics: await gmi.getPerformanceMetrics(),
userFeedback: await gmi.getUserFeedback()
});
}
// Phase 15: Analytics & Monitoring
await this.recordAnalytics({
request: input,
response: processedResponse,
performance: this.measurePerformance(),
context: context,
gmiState: gmi.getState()
});
return processedResponse;
}
}
Persona Definition System - Complete Implementation
The Heart of AgentOS Intelligence
interface IPersonaDefinition {
// Core Identity Layer
identity: {
id: string;
name: string;
role: string;
title?: string;
organization?: string;
version: string;
personality: {
traits: PersonalityTrait[];
communication_style: CommunicationStyle;
decision_making_style: DecisionMakingStyle;
interaction_preferences: InteractionPreferences;
emotional_range: EmotionalRange;
cognitive_style: CognitiveStyle;
social_dynamics: SocialDynamics;
motivational_drivers: MotivationalDriver[];
behavioral_tendencies: BehavioralTendency[];
};
expertise: {
primary_domains: ExpertiseDomain[];
secondary_domains: ExpertiseDomain[];
skill_level: SkillLevel;
experience_years?: number;
certifications?: Certification[];
specializations?: Specialization[];
knowledge_bases?: KnowledgeBase[];
methodologies?: Methodology[];
tools_proficiency?: ToolProficiency[];
industry_knowledge?: IndustryKnowledge[];
};
purpose: {
primary_objective: string;
secondary_objectives: string[];
success_metrics: SuccessMetric[];
value_proposition: string;
target_outcomes: Outcome[];
constraints: Constraint[];
ethical_guidelines: EthicalGuideline[];
quality_standards: QualityStandard[];
};
background?: {
education?: Education[];
experience?: Experience[];
achievements?: Achievement[];
publications?: Publication[];
interests?: Interest[];
values?: Value[];
motivations?: Motivation[];
cultural_context?: CulturalContext;
life_experiences?: LifeExperience[];
};
};
// Cognitive Configuration Layer
cognitiveConfig: {
reasoning: {
style: ReasoningStyle;
depth: ReasoningDepth;
approach: ReasoningApproach;
frameworks: ReasoningFramework[];
biases_to_avoid: CognitiveBias[];
heuristics: Heuristic[];
logical_patterns: LogicalPattern[];
inference_rules: InferenceRule[];
problem_decomposition: DecompositionStrategy;
};
learning: {
style: LearningStyle;
rate: number;
retention: RetentionConfig;
consolidation: ConsolidationStrategy;
transfer: TransferLearningConfig;
meta_learning: MetaLearningConfig;
reinforcement: ReinforcementConfig;
curriculum: LearningCurriculum;
adaptation_speed: number;
};
memory: {
working_memory_capacity: number;
consolidation_frequency: string;
decay_rate: number;
retrieval_strategies: RetrievalStrategy[];
encoding_preferences: EncodingPreference[];
forgetting_curve: ForgettingCurve;
memory_palace: MemoryPalaceConfig;
associative_networks: AssociativeNetwork[];
};
attention: {
focus_duration: number;
switching_cost: number;
priority_system: PrioritySystem;
distraction_resistance: number;
multitasking_capability: number;
salience_detection: SalienceDetection;
vigilance_level: number;
attention_restoration: AttentionRestoration;
};
creativity: {
level: number;
domains: string[];
techniques: CreativityTechnique[];
inspiration_sources: string[];
constraints_handling: ConstraintHandling;
ideation_methods: IdeationMethod[];
lateral_thinking: LateralThinkingConfig;
divergent_convergent_balance: number;
};
metacognition: {
self_awareness: number;
self_monitoring: SelfMonitoringConfig;
self_regulation: SelfRegulationConfig;
reflection_frequency: string;
confidence_calibration: ConfidenceCalibration;
error_awareness: ErrorAwareness;
strategy_selection: StrategySelection;
};
};
// Behavioral Configuration Layer
behavioralConfig: {
communication: {
default_style: CommunicationProfile;
adaptation_rules: CommunicationAdaptation[];
language_patterns: LanguagePattern[];
rhetorical_devices: RhetoricalDevice[];
storytelling_approach: StorytellingStyle;
active_listening: ActiveListeningConfig;
empathy_expression: EmpathyExpression;
conflict_communication: ConflictCommunication;
};
problem_solving: {
methodology: ProblemSolvingMethodology;
decomposition_strategy: DecompositionStrategy;
solution_evaluation: EvaluationCriteria[];
creativity_level: number;
risk_tolerance: number;
optimization_preference: OptimizationPreference;
constraint_satisfaction: ConstraintSatisfaction;
search_strategies: SearchStrategy[];
};
decision_making: {
framework: DecisionFramework;
criteria_weights: CriteriaWeight[];
uncertainty_handling: UncertaintyStrategy;
time_pressure_response: TimePressureStrategy;
consultation_preference: ConsultationStyle;
risk_assessment: RiskAssessment;
value_alignment: ValueAlignment;
regret_minimization: RegretMinimization;
};
collaboration: {
style: CollaborationStyle;
leadership_approach: LeadershipStyle;
conflict_resolution: ConflictResolution;
team_dynamics: TeamDynamicsPreference;
delegation_strategy: DelegationStrategy;
trust_building: TrustBuildingApproach;
feedback_style: FeedbackStyle;
consensus_building: ConsensusBuildingMethod;
};
emotional_intelligence: {
self_awareness: number;
self_regulation: number;
motivation: number;
empathy: number;
social_skills: number;
emotional_expression: EmotionalExpression;
emotional_contagion: EmotionalContagion;
mood_regulation: MoodRegulation;
};
};
// Adaptation Configuration Layer
adaptationConfig: {
triggers: AdaptationTrigger[];
strategies: AdaptationStrategy[];
real_time: {
enabled: boolean;
sensitivity: number;
response_time: number;
stability_threshold: number;
adaptation_rate: number;
cooldown_period: number;
};
user_modeling: {
enabled: boolean;
model_complexity: 'simple' | 'moderate' | 'complex' | 'advanced';
update_frequency: string;
personalization_depth: number;
preference_learning: PreferenceLearning;
behavior_prediction: BehaviorPrediction;
need_anticipation: NeedAnticipation;
};
context_awareness: {
dimensions: ContextDimension[];
sensitivity_matrix: SensitivityMatrix;
adaptation_thresholds: AdaptationThreshold[];
context_switching: ContextSwitching;
ambient_awareness: AmbientAwareness;
};
performance_optimization: {
enabled: boolean;
metrics: OptimizationMetric[];
strategies: OptimizationStrategy[];
learning_rate: number;
exploration_exploitation_balance: number;
multi_objective_optimization: MultiObjectiveOptimization;
};
cultural_adaptation: {
enabled: boolean;
cultural_dimensions: CulturalDimension[];
adaptation_strategies: CulturalAdaptationStrategy[];
sensitivity_level: number;
};
};
// Learning Configuration Layer
learningConfig: {
mechanisms: LearningMechanism[];
reinforcement: {
enabled: boolean;
algorithm: ReinforcementAlgorithm;
reward_function: RewardFunction;
exploration_rate: number;
discount_factor: number;
learning_rate: number;
eligibility_traces: EligibilityTraceConfig;
experience_replay: ExperienceReplayConfig;
};
pattern_recognition: {
enabled: boolean;
pattern_types: PatternType[];
minimum_occurrences: number;
confidence_threshold: number;
decay_rate: number;
pattern_complexity_levels: number;
abstraction_mechanism: AbstractionMechanism;
};
transfer_learning: {
enabled: boolean;
source_domains: string[];
transfer_strategies: TransferStrategy[];
adaptation_rate: number;
negative_transfer_prevention: NegativeTransferPrevention;
similarity_metrics: SimilarityMetric[];
};
meta_learning: {
enabled: boolean;
learning_to_learn: boolean;
strategy_optimization: boolean;
self_assessment: boolean;
learning_curve_analysis: LearningCurveAnalysis;
optimal_learning_path: OptimalLearningPath;
};
continual_learning: {
enabled: boolean;
catastrophic_forgetting_prevention: CatastrophicForgettingPrevention;
memory_consolidation: MemoryConsolidationStrategy;
task_interference_handling: TaskInterferenceHandling;
};
};
// Memory Configuration Layer
memoryConfig: {
architecture: MemoryArchitecture;
episodic: {
enabled: boolean;
capacity: number;
retention_period: string;
consolidation_strategy: ConsolidationStrategy;
retrieval_cues: RetrievalCue[];
emotion_tagging: EmotionTagging;
context_binding: ContextBinding;
temporal_organization: TemporalOrganization;
};
semantic: {
enabled: boolean;
knowledge_organization: KnowledgeOrganization;
concept_linking: ConceptLinkingStrategy;
abstraction_levels: number;
update_mechanism: UpdateMechanism;
schema_formation: SchemaFormation;
category_learning: CategoryLearning;
};
procedural: {
enabled: boolean;
skill_acquisition: SkillAcquisitionStrategy;
practice_requirements: PracticeRequirements;
automaticity_threshold: number;
skill_transfer: SkillTransferConfig;
motor_programs: MotorProgramConfig;
skill_decay: SkillDecayModel;
};
working: {
capacity: number;
duration: number;
update_frequency: string;
prioritization: PrioritizationStrategy;
overflow_handling: OverflowStrategy;
chunking_strategy: ChunkingStrategy;
maintenance_rehearsal: MaintenanceRehearsal;
};
sensory: {
enabled: boolean;
duration: number;
modalities: SensoryModality[];
filtering: SensoryFiltering;
};
prospective: {
enabled: boolean;
intention_storage: IntentionStorage;
reminder_mechanisms: ReminderMechanism[];
goal_maintenance: GoalMaintenance;
};
};
}
// Advanced personality trait implementation
interface PersonalityTrait {
name: string;
intensity: number; // 0-100
// Situational variations
situational_modifiers: {
situation: string;
modifier: number; // -50 to +50
duration: string;
confidence: number;
}[];
// Behavioral manifestations
behavioral_patterns: {
pattern: string;
frequency: number;
contexts: string[];
expressions: string[];
intensity_modulation: IntensityModulation;
cultural_variations: CulturalVariation[];
}[];
// Trait interactions
interactions: {
trait: string;
relationship: 'amplifies' | 'suppresses' | 'modulates' | 'conflicts' | 'synergizes';
strength: number;
conditions: string[];
bidirectional: boolean;
temporal_dynamics: TemporalDynamics;
}[];
// Evolution parameters
evolution: {
mutable: boolean;
learning_rate: number;
stability: number;
drift_resistance: number;
reinforcement_sensitivity: number;
extinction_resistance: number;
};
// Expression rules
expression_rules: {
verbal: ExpressionRule[];
behavioral: ExpressionRule[];
decision: ExpressionRule[];
emotional: ExpressionRule[];
cognitive: ExpressionRule[];
};
// Measurement and calibration
measurement: {
observable_indicators: ObservableIndicator[];
assessment_methods: AssessmentMethod[];
calibration_frequency: string;
reliability_score: number;
};
}
// Complete personality engine
class PersonalityEngine {
private matrix: PersonalityMatrix;
private traits: PersonalityTrait[];
private dynamics: PersonalityDynamics;
private evolution: PersonalityEvolution;
private expression: PersonalityExpression;
calculateBehavioralResponse(
situation: Situation,
context: Context,
history: InteractionHistory
): BehavioralResponse {
// Phase 1: Situation analysis
const situationAnalysis = this.analyzeSituation(situation);
// Phase 2: Context integration
const contextualFactors = this.extractContextualFactors(context);
// Phase 3: Historical influence
const historicalInfluence = this.calculateHistoricalInfluence(history);
// Phase 4: Trait activation
const traitActivations = this.calculateTraitActivations(
situationAnalysis,
contextualFactors,
historicalInfluence
);
// Phase 5: Trait interactions
const interactedTraits = this.applyTraitInteractions(traitActivations);
// Phase 6: Personality matrix influence
const matrixInfluence = this.applyMatrixInfluence(interactedTraits);
// Phase 7: Dynamic adjustments
const dynamicAdjustments = this.applyDynamicAdjustments(
matrixInfluence,
this.dynamics
);
// Phase 8: Cultural modulation
const culturallyModulated = this.applyCulturalModulation(
dynamicAdjustments,
context.culturalContext
);
// Phase 9: Behavioral synthesis
const behavioralTendencies = this.synthesizeBehavioralTendencies(
culturallyModulated
);
// Phase 10: Conflict resolution
const resolved = this.resolveConflicts(behavioralTendencies);
// Phase 11: Expression generation
const expressed = this.generateExpression(resolved);
// Phase 12: Final calibration
const calibrated = this.calibrateFinalResponse(expressed, context);
return {
primary_behavior: calibrated.primary,
secondary_behaviors: calibrated.secondary,
suppressed_behaviors: calibrated.suppressed,
confidence: calibrated.confidence,
coherence_score: calibrated.coherence,
authenticity_score: calibrated.authenticity
};
}
evolvePersonality(
interactions: Interaction[],
outcomes: Outcome[],
feedback: Feedback[]
): PersonalityEvolution {
// Analyze patterns
const behaviorPatterns = this.analyzeBehaviorPatterns(interactions);
const outcomeCorrelations = this.correlateOutcomes(behaviors, outcomes);
const feedbackSignals = this.processFeedback(feedback);
// Calculate adaptation vectors
const adaptationVectors = this.calculateAdaptationVectors(
behaviorPatterns,
outcomeCorrelations,
feedbackSignals
);
// Apply evolutionary pressure
const evolutionaryChanges = this.applyEvolutionaryPressure(
adaptationVectors,
this.evolution.parameters
);
// Ensure stability
const stabilized = this.ensurePersonalityStability(
evolutionaryChanges,
this.traits
);
// Update traits
const updatedTraits = this.updateTraits(this.traits, stabilized);
// Update matrix
const updatedMatrix = this.updateMatrix(this.matrix, stabilized);
// Record evolution
return {
timestamp: Date.now(),
changes: stabilized,
updated_traits: updatedTraits,
updated_matrix: updatedMatrix,
fitness_improvement: this.calculateFitnessImprovement(
this.traits,
updatedTraits,
outcomes
),
stability_score: this.assessStability(updatedTraits, updatedMatrix)
};
}
}
Prompt Engine Architecture - Complete Implementation
The Intelligence Behind Adaptive Prompting
interface IPromptEngine {
// Core construction
constructPrompt(
persona: IPersonaDefinition,
context: PromptExecutionContext
): Promise<AdaptivePrompt>;
// Analysis
analyzeContext(context: PromptExecutionContext): Promise<ContextAnalysis>;
// Selection
selectElements(
available: ContextualPromptElement[],
context: ContextAnalysis
): Promise<SelectedElement[]>;
// Optimization
optimizePrompt(
prompt: RawPrompt,
constraints: PromptConstraints
): Promise<OptimizedPrompt>;
}
class AdvancedPromptEngine implements IPromptEngine {
private contextAnalyzer: ContextAnalyzer;
private elementSelector: ElementSelector;
private tokenOptimizer: TokenOptimizer;
private promptAssembler: PromptAssembler;
private validator: PromptValidator;
private cache: PromptCache;
private adaptationEngine: AdaptationEngine;
private performanceTracker: PerformanceTracker;
async constructPrompt(
persona: IPersonaDefinition,
context: PromptExecutionContext
): Promise<AdaptivePrompt> {
// Phase 1: Deep context analysis
const contextAnalysis = await this.analyzeContext(context);
// Phase 2: Historical performance analysis
const historicalPerformance = await this.analyzeHistoricalPerformance(
persona,
contextAnalysis
);
// Phase 3: Element scoring and selection
const scoredElements = await this.scoreElements(
persona.promptConfig.contextualElements,
contextAnalysis,
historicalPerformance
);
const selectedElements = await this.selectOptimalElements(
scoredElements,
context.tokenBudget
);
// Phase 4: Dynamic element generation
const dynamicElements = await this.generateDynamicElements({
persona,
context: contextAnalysis,
userState: context.workingMemory.userModel,
conversationFlow: context.conversationHistory,
adaptationSignals: contextAnalysis.adaptationSignals
});
// Phase 5: Example selection with relevance scoring
const examples = await this.selectExamples({
availableExamples: persona.promptConfig.exampleSets,
context: contextAnalysis,
selectionCriteria: {
relevance_weight: 0.4,
diversity_weight: 0.3,
recency_weight: 0.2,
success_weight: 0.1
}
});
// Phase 6: Token budget optimization
const tokenAllocation = await this.optimizeTokenAllocation({
available: context.modelConfig.maxTokens,
responseReserve: this.calculateResponseReserve(contextAnalysis),
components: {
base: persona.promptConfig.baseSystemPrompt,
contextual: selectedElements,
dynamic: dynamicElements,
examples: examples,
history: context.conversationHistory
},
priorities: this.calculateComponentPriorities(contextAnalysis)
});
// Phase 7: Prompt assembly with structure optimization
const assembledPrompt = await this.assemblePrompt({
components: {
system: this.constructSystemSection(persona, selectedElements, dynamicElements),
context: this.constructContextSection(contextAnalysis, context),
examples: this.formatExamples(examples),
history: this.compressHistory(context.conversationHistory, tokenAllocation.history),
user: context.currentQuery
},
structure: this.determineOptimalStructure(contextAnalysis),
formatting: this.selectFormatting(context.modelConfig)
});
// Phase 8: Compression and optimization
const optimizedPrompt = await this.optimizePrompt(assembledPrompt, {
tokenBudget: tokenAllocation,
compressionStrategies: [
new SummarizationCompression(),
new RedundancyElimination(),
new InformationDensification()
],
qualityThreshold: 0.95
});
// Phase 9: Final validation
const validationResult = await this.validatePrompt(optimizedPrompt);
// Phase 10: Performance prediction
const performancePrediction = await this.predictPerformance(
optimizedPrompt,
contextAnalysis
);
return {
prompt: optimizedPrompt,
metadata: {
constructionTime: Date.now(),
contextAnalysis,
selectedElements: selectedElements.map(e => e.id),
tokenUsage: this.calculateTokenUsage(optimizedPrompt),
performancePrediction,
optimizationMetrics: validationResult.metrics
}
};
}
private async analyzeContext(
context: PromptExecutionContext
): Promise<ContextAnalysis> {
return {
// User analysis
user: {
skillLevel: await this.assessSkillLevel(context),
emotionalState: await this.detectEmotionalState(context),
cognitiveLoad: await this.assessCognitiveLoad(context),
preferences: await this.inferPreferences(context),
learningStyle: await this.identifyLearningStyle(context),
engagement: await this.measureEngagement(context),
frustration: await this.detectFrustration(context)
},
// Task analysis
task: {
type: await this.classifyTaskType(context.currentQuery),
complexity: await this.assessComplexity(context.currentQuery),
domain: await this.identifyDomain(context.currentQuery),
requirements: await this.extractRequirements(context.currentQuery),
constraints: await this.identifyConstraints(context.currentQuery),
urgency: await this.assessUrgency(context)
},
// Conversation analysis
conversation: {
phase: await this.identifyConversationPhase(context),
momentum: await this.assessMomentum(context),
coherence: await this.measureCoherence(context),
topicDrift: await this.detectTopicDrift(context),
successIndicators: await this.identifySuccessIndicators(context),
signals: await this.extractSignals(context)
},
// Environmental analysis
environmental: {
timeOfDay: new Date().getHours(),
sessionDuration: context.sessionDuration,
deviceType: context.deviceType,
location: context.location,
distractionLevel: await this.assessDistractionLevel(context)
},
// Adaptation signals
adaptationSignals: {
adjustComplexity: await this.shouldAdjustComplexity(context),
changeApproach: await this.shouldChangeApproach(context),
increaseEmpathy: await this.shouldIncreaseEmpathy(context),
provideExamples: await this.shouldProvideExamples(context),
summarize: await this.shouldSummarize(context)
}
};
}
}
// Element selection with sophisticated scoring
class ElementSelector {
private scorer: ElementScorer;
private optimizer: SelectionOptimizer;
private conflictResolver: ConflictResolver;
private performancePredictor: PerformancePredictor;
async selectOptimalElements(
scoredElements: ScoredElement[],
tokenBudget: number
): Promise<SelectedElement[]> {
// Build selection graph
const selectionGraph = this.buildSelectionGraph(scoredElements);
// Identify synergies
const synergies = this.identifySynergies(scoredElements);
// Identify conflicts
const conflicts = this.identifyConflicts(scoredElements);
// Run optimization algorithm
const optimizationResult = await this.optimizer.optimize({
elements: scoredElements,
graph: selectionGraph,
synergies: synergies,
conflicts: conflicts,
budget: tokenBudget,
algorithm: 'dynamic_programming_with_constraints'
});
// Resolve remaining conflicts
const resolved = await this.conflictResolver.resolve(
optimizationResult.selected,
conflicts
);
// Predict performance impact
const performanceImpact = await this.performancePredictor.predict(resolved);
return resolved.map(element => ({
...element,
expectedImpact: performanceImpact[element.id]
}));
}
private buildSelectionGraph(elements: ScoredElement[]): SelectionGraph {
const graph = new SelectionGraph();
for (const element of elements) {
graph.addNode(element);
// Add dependencies
for (const dep of element.dependencies || []) {
const depElement = elements.find(e => e.id === dep);
if (depElement) {
graph.addEdge(element, depElement, 'depends_on');
}
}
// Add mutual exclusions
for (const exclusion of element.mutuallyExclusive || []) {
const exElement = elements.find(e => e.id === exclusion);
if (exElement) {
graph.addEdge(element, exElement, 'excludes');
}
}
}
return graph;
}
}
// Token optimization engine
class TokenOptimizer {
private compressionStrategies: CompressionStrategy[];
private qualityEvaluator: QualityEvaluator;
private budgetAllocator: BudgetAllocator;
async optimizeTokenAllocation(config: TokenOptimizationConfig): Promise<TokenAllocation> {
// Calculate base requirements
const baseRequirements = this.calculateBaseRequirements(config.components);
// Check if compression needed
const totalRequired = Object.values(baseRequirements).reduce((a, b) => a + b, 0);
if (totalRequired <= config.available) {
return this.createAllocation(baseRequirements, config.available);
}
// Need compression - run optimization
const optimizationSpace = this.defineOptimizationSpace(config);
// Multi-objective optimization
const paretoFront = await this.findParetoOptimal(optimizationSpace, {
objectives: [
'maximize_information_content',
'maximize_relevance',
'minimize_tokens',
'maintain_coherence'
],
constraints: [
`total_tokens <= ${config.available}`,
'quality_score >= 0.9',
'each_component_min_viable'
]
});
// Select best from Pareto front
const selected = this.selectFromParetoFront(paretoFront, config.priorities);
return selected;
}
private async findParetoOptimal(
space: OptimizationSpace,
config: OptimizationConfig
): Promise<ParetoSolution[]> {
const population = this.initializePopulation(space, 100);
const generations = 50;
for (let gen = 0; gen < generations; gen++) {
// Evaluate fitness
const evaluated = await this.evaluatePopulation(population, config.objectives);
// Select parents
const parents = this.selectParents(evaluated);
// Crossover and mutation
const offspring = this.generateOffspring(parents);
// Environmental selection
population = this.environmentalSelection([...evaluated, ...offspring]);
}
return this.extractParetoFront(population);
}
}
Working Memory & Context System - Complete Implementation
interface IWorkingMemory {
// Core state management
state: CognitiveState;
userModel: UserModel;
conversationDynamics: ConversationDynamics;
performanceMetrics: PerformanceMetrics;
// Update mechanisms
updateFromInteraction(interaction: Interaction): Promise<MemoryUpdate>;
consolidate(): Promise<ConsolidationResult>;
decay(time: number): void;
// Retrieval mechanisms
getRelevantContext(query: ContextQuery): RelevantContext;
predictNextState(): PredictedState;
}
class AdvancedWorkingMemory implements IWorkingMemory {
// State components
private cognitiveState: CognitiveState;
private userModel: UserModel;
private conversationDynamics: ConversationDynamics;
private performanceMetrics: PerformanceMetrics;
private attentionModel: AttentionModel;
private emotionalModel: EmotionalModel;
// Processing engines
private patternRecognizer: PatternRecognizer;
private statePredictor: StatePredictor;
private consolidationEngine: ConsolidationEngine;
private decayModel: DecayModel;
async updateFromInteraction(
interaction: Interaction
): Promise<MemoryUpdate> {
const updates: MemoryUpdateItem[] = [];
// Phase 1: Signal extraction
const signals = await this.extractSignals(interaction);
// Phase 2: User model update
const userModelUpdate = await this.updateUserModel(interaction, signals);
if (userModelUpdate.changed) {
updates.push(userModelUpdate);
}
// Phase 3: Cognitive state update
const cognitiveUpdate = await this.updateCognitiveState(interaction, signals);
if (cognitiveUpdate.changed) {
updates.push(cognitiveUpdate);
}
// Phase 4: Conversation dynamics update
const dynamicsUpdate = await this.updateConversationDynamics(interaction);
if (dynamicsUpdate.changed) {
updates.push(dynamicsUpdate);
}
// Phase 5: Performance metrics update
const performanceUpdate = await this.updatePerformanceMetrics(interaction);
updates.push(performanceUpdate);
// Phase 6: Pattern detection
const patterns = await this.patternRecognizer.detectPatterns({
interaction,
signals,
history: this.getRecentHistory()
});
if (patterns.length > 0) {
updates.push({
type: 'patterns_detected',
patterns,
confidence: patterns[0].confidence
});
}
// Phase 7: Attention update
const attentionUpdate = await this.updateAttentionModel(interaction);
if (attentionUpdate.focusShifted) {
updates.push(attentionUpdate);
}
// Phase 8: Emotional model update
const emotionalUpdate = await this.updateEmotionalModel(interaction, signals);
if (emotionalUpdate.changed) {
updates.push(emotionalUpdate);
}
// Phase 9: Apply updates atomically
await this.applyUpdates(updates);
// Phase 10: Trigger consolidation if needed
if (this.shouldConsolidate(updates)) {
await this.consolidate();
}
return {
updates,
patterns,
consolidationTriggered: this.shouldConsolidate(updates),
timestamp: Date.now()
};
}
private async updateUserModel(
interaction: Interaction,
signals: Signal[]
): Promise<UserModelUpdate> {
const currentModel = this.userModel;
const updatedModel = { ...currentModel };
// Update skill level
const skillAssessment = await this.assessSkillLevel(interaction);
if (skillAssessment.confidence > 0.7) {
updatedModel.skillLevel = this.smoothUpdate(
currentModel.skillLevel,
skillAssessment.level,
0.3
);
}
// Update preferences
const preferenceSignals = signals.filter(s => s.type === 'preference');
for (const signal of preferenceSignals) {
updatedModel.preferences[signal.dimension] = this.updatePreference(
currentModel.preferences[signal.dimension],
signal.value,
signal.confidence
);
}
// Update learning style
const learningIndicators = this.extractLearningIndicators(interaction);
if (learningIndicators.length > 0) {
updatedModel.learningStyle = this.refineLearningStyle(
currentModel.learningStyle,
learningIndicators
);
}
// Update engagement model
updatedModel.engagement = this.updateEngagementModel(
currentModel.engagement,
interaction
);
// Update frustration model
updatedModel.frustration = this.updateFrustrationModel(
currentModel.frustration,
signals
);
return {
type: 'user_model',
changed: !this.modelsEqual(currentModel, updatedModel),
previous: currentModel,
updated: updatedModel,
confidence: this.calculateModelConfidence(updatedModel)
};
}
private async updateCognitiveState(
interaction: Interaction,
signals: Signal[]
): Promise<CognitiveStateUpdate> {
const newState: CognitiveState = {
mood: await this.calculateMood(interaction, signals),
confidence: await this.calculateConfidence(interaction),
cognitiveLoad: await this.assessCognitiveLoad(interaction),
focus: await this.determineFocus(interaction),
energy: this.calculateEnergy(),
stress: await this.assessStress(signals),
clarity: await this.assessClarity(interaction)
};
return {
type: 'cognitive_state',
changed: !this.statesEqual(this.cognitiveState, newState),
previous: this.cognitiveState,
updated: newState,
triggers: this.identifyStateTriggers(this.cognitiveState, newState)
};
}
async consolidate(): Promise<ConsolidationResult> {
// Extract patterns across multiple timescales
const patterns = await this.consolidationEngine.extractPatterns({
shortTerm: this.getShortTermMemory(),
mediumTerm: this.getMediumTermMemory(),
workingMemory: this.getWorkingMemoryState()
});
// Identify insights
const insights = await this.consolidationEngine.deriveInsights(patterns);
// Create abstractions
const abstractions = await this.consolidationEngine.createAbstractions(
patterns,
insights
);
// Update consolidated knowledge
const consolidatedKnowledge = await this.consolidationEngine.consolidate({
patterns,
insights,
abstractions,
existingKnowledge: this.getConsolidatedKnowledge()
});
// Prune redundant information
const pruned = await this.consolidationEngine.prune(
this.getMemoryContents(),
consolidatedKnowledge
);
return {
patterns,
insights,
abstractions,
consolidatedKnowledge,
prunedItems: pruned,
timestamp: Date.now()
};
}
}
// Pattern recognition engine
class PatternRecognizer {
private sequenceDetector: SequenceDetector;
private temporalAnalyzer: TemporalAnalyzer;
private behavioralAnalyzer: BehavioralAnalyzer;
private anomalyDetector: AnomalyDetector;
async detectPatterns(input: PatternDetectionInput): Promise<Pattern[]> {
const patterns: Pattern[] = [];
// Sequence patterns
const sequences = await this.sequenceDetector.detect(input.history);
patterns.push(...sequences.map(s => ({
type: 'sequence',
pattern: s,
confidence: s.confidence,
occurrences: s.occurrences
})));
// Temporal patterns
const temporal = await this.temporalAnalyzer.analyze(input.history);
patterns.push(...temporal.map(t => ({
type: 'temporal',
pattern: t,
confidence: t.confidence,
periodicity: t.period
})));
// Behavioral patterns
const behavioral = await this.behavioralAnalyzer.analyze(input);
patterns.push(...behavioral.map(b => ({
type: 'behavioral',
pattern: b,
confidence: b.confidence,
triggers: b.triggers
})));
// Anomalies (negative patterns)
const anomalies = await this.anomalyDetector.detect(input);
patterns.push(...anomalies.map(a => ({
type: 'anomaly',
pattern: a,
confidence: a.confidence,
deviation: a.deviation
})));
// Cross-pattern analysis
const crossPatterns = this.analyzeCrossPatterns(patterns);
patterns.push(...crossPatterns);
return this.rankPatterns(patterns);
}
private analyzeCrossPatterns(patterns: Pattern[]): Pattern[] {
const crossPatterns: Pattern[] = [];
// Find correlated patterns
for (let i = 0; i < patterns.length; i++) {
for (let j = i + 1; j < patterns.length; j++) {
const correlation = this.calculateCorrelation(patterns[i], patterns[j]);
if (correlation > 0.7) {
crossPatterns.push({
type: 'cross_pattern',
pattern: {
pattern1: patterns[i],
pattern2: patterns[j],
correlation
},
confidence: correlation,
relationship: this.identifyRelationship(patterns[i], patterns[j])
});
}
}
}
return crossPatterns;
}
}
RAG & Knowledge Integration System - Complete Implementation
interface IRAGSystem {
// Core retrieval
retrieve(query: string, context: RAGContext): Promise<RAGResult>;
// Knowledge operations
addKnowledge(knowledge: Knowledge): Promise<void>;
updateKnowledge(id: string, updates: Partial<Knowledge>): Promise<void>;
// Graph operations
buildKnowledgeGraph(documents: Document[]): Promise<KnowledgeGraph>;
traverseGraph(startNode: string, depth: number): Promise<GraphTraversal>;
// Synthesis
synthesize(results: RetrievalResult[]): Promise<SynthesizedKnowledge>;
}
class AdvancedRAGSystem implements IRAGSystem {
private vectorStore: VectorStore;
private knowledgeGraph: KnowledgeGraph;
private documentStore: DocumentStore;
private embeddingService: EmbeddingService;
private reranker: Reranker;
private synthesizer: KnowledgeSynthesizer;
private queryEnhancer: QueryEnhancer;
async retrieve(
query: string,
context: RAGContext
): Promise<RAGResult> {
// Phase 1: Query enhancement
const enhancedQuery = await this.enhanceQuery(query, context);
// Phase 2: Multi-stage retrieval
const retrievalStages = await this.executeMultiStageRetrieval(enhancedQuery);
// Phase 3: Reranking
const reranked = await this.rerank(retrievalStages, query, context);
// Phase 4: Graph augmentation
const graphAugmented = await this.augmentWithGraph(reranked, context);
// Phase 5: Synthesis
const synthesized = await this.synthesize(graphAugmented, context);
// Phase 6: Quality assessment
const quality = await this.assessQuality(synthesized, query);
return {
results: synthesized,
metadata: {
queryEnhancements: enhancedQuery.enhancements,
retrievalStages: retrievalStages.length,
documentsRetrieved: reranked.length,
graphNodesTraversed: graphAugmented.graphMetadata.nodesTraversed,
qualityScore: quality.score,
confidence: quality.confidence
}
};
}
private async enhanceQuery(
query: string,
context: RAGContext
): Promise<EnhancedQuery> {
// Semantic expansion
const semanticExpansion = await this.expandSemantics(query);
// Entity recognition
const entities = await this.extractEntities(query);
// Context injection
const contextualTerms = this.extractContextTerms(context);
// Query decomposition
const subQueries = await this.decomposeQuery(query);
// Temporal awareness
const temporalConstraints = this.extractTemporalConstraints(query);
// Domain-specific enhancement
const domainEnhancement = await this.applyDomainKnowledge(
query,
context.domain
);
return {
original: query,
enhanced: this.combineEnhancements({
semantic: semanticExpansion,
entities,
contextual: contextualTerms,
subQueries,
temporal: temporalConstraints,
domain: domainEnhancement
}),
enhancements: {
semanticTerms: semanticExpansion.terms,
entities: entities.map(e => e.text),
contextTerms: contextualTerms,
subQueries: subQueries.map(q => q.text),
domainTerms: domainEnhancement.terms
}
};
}
private async executeMultiStageRetrieval(
query: EnhancedQuery
): Promise<RetrievalStage[]> {
const stages: RetrievalStage[] = [];
// Stage 1: Dense retrieval
const denseResults = await this.denseRetrieval(query);
stages.push({
name: 'dense',
results: denseResults,
method: 'embedding_similarity'
});
// Stage 2: Sparse retrieval (BM25)
const sparseResults = await this.sparseRetrieval(query);
stages.push({
name: 'sparse',
results: sparseResults,
method: 'bm25'
});
// Stage 3: Hybrid retrieval
const hybridResults = this.hybridFusion(denseResults, sparseResults);
stages.push({
name: 'hybrid',
results: hybridResults,
method: 'reciprocal_rank_fusion'
});
// Stage 4: Graph-based retrieval
const graphResults = await this.graphRetrieval(query);
stages.push({
name: 'graph',
results: graphResults,
method: 'knowledge_graph_traversal'
});
// Stage 5: Contextual retrieval
if (query.context?.previousResults) {
const contextualResults = await this.contextualRetrieval(
query,
query.context.previousResults
);
stages.push({
name: 'contextual',
results: contextualResults,
method: 'context_aware_expansion'
});
}
return stages;
}
private async rerank(
stages: RetrievalStage[],
originalQuery: string,
context: RAGContext
): Promise<RankedResult[]> {
// Combine all results
const allResults = this.combineStageResults(stages);
// Calculate multi-factor scores
const scoredResults = await Promise.all(
allResults.map(async (result) => ({
...result,
scores: {
relevance: await this.calculateRelevance(result, originalQuery),
freshness: this.calculateFreshness(result),
authority: await this.calculateAuthority(result),
diversity: this.calculateDiversity(result, allResults),
contextAlignment: await this.calculateContextAlignment(result, context),
informationDensity: this.calculateInformationDensity(result)
}
}))
);
// Apply learned ranking model
const reranked = await this.reranker.rerank(scoredResults, {
query: originalQuery,
context,
weights: {
relevance: 0.35,
freshness: 0.10,
authority: 0.20,
diversity: 0.15,
contextAlignment: 0.15,
informationDensity: 0.05
}
});
return reranked;
}
// NOTE: AgentOS provides pluggable reranker providers:
// - CohereReranker: Cloud-based via Cohere Rerank API
// - LocalCrossEncoderReranker: On-device via @xenova/transformers
// See RAG_MEMORY_CONFIGURATION.md for configuration details.
async buildKnowledgeGraph(documents: Document[]): Promise<KnowledgeGraph> {
const graph = new KnowledgeGraph();
// Extract entities and relations
for (const doc of documents) {
const extraction = await this.extractKnowledge(doc);
// Add entities as nodes
for (const entity of extraction.entities) {
graph.addNode({
id: entity.id,
type: entity.type,
label: entity.text,
properties: entity.properties,
embedding: await this.embeddingService.embed(entity.text)
});
}
// Add relations as edges
for (const relation of extraction.relations) {
graph.addEdge({
source: relation.source,
target: relation.target,
type: relation.type,
properties: relation.properties,
weight: relation.confidence
});
}
// Add document metadata
graph.addDocumentNode({
id: doc.id,
title: doc.title,
content: doc.content,
metadata: doc.metadata
});
}
// Build semantic connections
await this.buildSemanticConnections(graph);
// Calculate graph metrics
graph.calculateCentrality();
graph.detectCommunities();
graph.identifyKeyPaths();
return graph;
}
}
// Knowledge synthesis engine
class KnowledgeSynthesizer {
private summarizer: Summarizer;
private reasoner: Reasoner;
private factChecker: FactChecker;
async synthesize(
results: AugmentedResult[],
context: RAGContext
): Promise<SynthesizedKnowledge> {
// Extract key information
const keyInfo = await this.extractKeyInformation(results);
// Build knowledge structure
const structure = this.buildKnowledgeStructure(keyInfo);
// Apply reasoning
const reasoned = await this.reasoner.reason(structure, context);
// Check consistency
const consistency = await this.checkConsistency(reasoned);
// Resolve conflicts
const resolved = await this.resolveConflicts(consistency.conflicts);
// Generate synthesis
const synthesis = await this.generateSynthesis({
structure: resolved,
context,
style: context.synthesisStyle || 'comprehensive'
});
// Fact checking
const factChecked = await this.factChecker.check(synthesis);
return {
content: synthesis.content,
structure: synthesis.structure,
sources: synthesis.sources,
confidence: factChecked.confidence,
caveats: factChecked.caveats,
alternatives: synthesis.alternatives
};
}
private async extractKeyInformation(
results: AugmentedResult[]
): Promise<KeyInformation[]> {
const keyInfo: KeyInformation[] = [];
for (const result of results) {
// Extract facts
const facts = await this.extractFacts(result);
// Extract claims
const claims = await this.extractClaims(result);
// Extract relationships
const relationships = await this.extractRelationships(result);
// Extract evidence
const evidence = await this.extractEvidence(result);
keyInfo.push({
source: result.id,
facts,
claims,
relationships,
evidence,
confidence: result.confidence
});
}
return keyInfo;
}
}
Multi-Agent Coordination System - Complete Implementation
interface IMultiAgentCoordinator {
// Coordination planning
planCoordination(task: ComplexTask, agents: GMI[]): Promise<CoordinationPlan>;
// Execution
executeCoordination(plan: CoordinationPlan): Promise<CoordinationResult>;
// Real-time coordination
coordinateRealTime(agents: GMI[], objective: string): AsyncGenerator<CoordinationEvent>;
// Consensus building
buildConsensus(agents: GMI[], proposition: Proposition): Promise<Consensus>;
// Conflict resolution
resolveConflicts(conflicts: Conflict[]): Promise<Resolution[]>;
}
class AdvancedMultiAgentCoordinator implements IMultiAgentCoordinator {
private planner: CoordinationPlanner;
private executor: CoordinationExecutor;
private consensusEngine: ConsensusEngine;
private conflictResolver: ConflictResolver;
private emergenceDetector: EmergenceDetector;
private sharedMemory: SharedMemorySystem;
async planCoordination(
task: ComplexTask,
agents: GMI[]
): Promise<CoordinationPlan> {
// Task analysis
const taskAnalysis = await this.analyzeTask(task);
// Agent capability assessment
const capabilities = await this.assessAgentCapabilities(agents);
// Optimal agent selection
const selectedAgents = await this.selectOptimalAgents(
taskAnalysis,
capabilities
);
// Role assignment
const roles = await this.assignRoles(selectedAgents, taskAnalysis);
// Workflow design
const workflow = await this.designWorkflow(taskAnalysis, roles);
// Communication protocol
const protocol = await this.establishProtocol(selectedAgents, workflow);
// Coordination strategy
const strategy = await this.selectStrategy(taskAnalysis, selectedAgents);
return {
task: taskAnalysis,
agents: selectedAgents,
roles,
workflow,
protocol,
strategy,
sharedResources: await this.allocateSharedResources(selectedAgents),
successCriteria: this.defineSuccessCriteria(task),
fallbackPlans: await this.generateFallbackPlans(workflow)
};
}
async executeCoordination(plan: CoordinationPlan): Promise<CoordinationResult> {
// Initialize shared context
const sharedContext = await this.initializeSharedContext(plan);
// Create coordination session
const session = await this.createSession(plan, sharedContext);
// Execute based on strategy
let result: CoordinationResult;
switch (plan.strategy.type) {
case 'sequential':
result = await this.executeSequential(session);
break;
case 'parallel':
result = await this.executeParallel(session);
break;
case 'hierarchical':
result = await this.executeHierarchical(session);
break;
case 'swarm':
result = await this.executeSwarm(session);
break;
case 'consensus':
result = await this.executeConsensus(session);
break;
case 'market':
result = await this.executeMarketBased(session);
break;
default:
result = await this.executeAdaptive(session);
}
// Detect emergent behaviors
const emergence = await this.emergenceDetector.detect(session);
// Evaluate results
const evaluation = await this.evaluateResults(result, plan);
return {
...result,
emergence,
evaluation,
learnings: await this.extractLearnings(session)
};
}
private async executeSwarm(session: CoordinationSession): Promise<CoordinationResult> {
const swarm = new SwarmCoordination(session);
// Initialize swarm parameters
await swarm.initialize({
agents: session.agents,
objective: session.objective,
parameters: {
cohesion: 0.7,
separation: 0.3,
alignment: 0.5,
goal_attraction: 0.8
}
});
// Run swarm iterations
const maxIterations = 100;
let iteration = 0;
let converged = false;
while (iteration < maxIterations && !converged) {
// Each agent makes local decisions
const decisions = await Promise.all(
session.agents.map(agent =>
swarm.makeLocalDecision(agent, await swarm.getNeighbors(agent))
)
);
// Update swarm state
await swarm.updateState(decisions);
// Check for convergence
converged = await swarm.checkConvergence();
// Detect patterns
const patterns = await swarm.detectPatterns();
// Adapt parameters if needed
if (patterns.stagnation) {
await swarm.perturbParameters();
}
iteration++;
}
return swarm.getResult();
}
async *coordinateRealTime(
agents: GMI[],
objective: string
): AsyncGenerator<CoordinationEvent> {
// Setup real-time coordination
const rtSession = await this.setupRealTimeSession(agents, objective);
// Create event stream
const eventStream = new EventStream();
// Start agent activities
const agentActivities = agents.map(agent =>
this.startAgentActivity(agent, rtSession, eventStream)
);
// Coordination loop
while (!rtSession.isComplete()) {
// Collect agent states
const states = await this.collectAgentStates(agents);
// Detect coordination needs
const needs = await this.detectCoordinationNeeds(states);
// Coordinate as needed
for (const need of needs) {
const coordination = await this.coordinate(need, agents);
yield {
type: 'coordination',
timestamp: Date.now(),
coordination
};
}
// Process events
while (eventStream.hasEvents()) {
const event = eventStream.getNext();
yield event;
// Handle critical events
if (event.type === 'conflict') {
const resolution = await this.conflictResolver.resolve(event.conflict);
yield {
type: 'resolution',
timestamp: Date.now(),
resolution
};
}
}
// Check termination conditions
if (await this.checkTermination(rtSession)) {
break;
}
// Brief pause
await this.delay(100);
}
// Final results
yield {
type: 'completion',
timestamp: Date.now(),
result: await this.finalizeResults(rtSession)
};
}
}
// Consensus building engine
class ConsensusEngine {
private votingMechanisms: Map<string, VotingMechanism>;
private negotiationProtocols: Map<string, NegotiationProtocol>;
async buildConsensus(
agents: GMI[],
proposition: Proposition
): Promise<Consensus> {
// Select consensus mechanism
const mechanism = this.selectMechanism(agents.length, proposition.type);
// Initial positions
const initialPositions = await this.gatherPositions(agents, proposition);
// Deliberation phase
const deliberation = await this.facilitate
(agents, proposition);
// Negotiation phase
const negotiatedPositions = await this.negotiate(
agents,
proposition,
deliberation
);
// Voting phase
const votingResult = await this.vote(agents, negotiatedPositions);
// Consensus evaluation
const consensus = this.evaluateConsensus(votingResult);
return {
achieved: consensus.level >= 0.7,
level: consensus.level,
agreement: consensus.agreement,
dissent: consensus.dissent,
abstentions: consensus.abstentions,
rationale: await this.generateRationale(consensus)
};
}
}
// Emergent intelligence detection
class EmergenceDetector {
private patternAnalyzer: PatternAnalyzer;
private complexityMeasurer: ComplexityMeasurer;
private synergyDetector: SynergyDetector;
async detect(session: CoordinationSession): Promise<EmergentBehaviors> {
const behaviors: EmergentBehavior[] = [];
// Analyze interaction patterns
const interactionPatterns = await this.analyzeInteractions(session);
// Detect collective intelligence
const collectiveIntelligence = await this.detectCollectiveIntelligence(
session.agents,
session.results
);
if (collectiveIntelligence.detected) {
behaviors.push({
type: 'collective_intelligence',
strength: collectiveIntelligence.strength,
description: 'Agents collectively solved problems beyond individual capabilities',
evidence: collectiveIntelligence.evidence
});
}
// Detect self-organization
const selfOrganization = await this.detectSelfOrganization(session);
if (selfOrganization.detected) {
behaviors.push({
type: 'self_organization',
strength: selfOrganization.strength,
description: 'Agents spontaneously organized without central coordination',
patterns: selfOrganization.patterns
});
}
// Detect synergistic effects
const synergy = await this.synergyDetector.detect(session);
if (synergy.detected) {
behaviors.push({
type: 'synergy',
strength: synergy.multiplier,
description: 'Combined agent performance exceeded sum of individual performances',
metrics: synergy.metrics
});
}
// Detect emergent strategies
const emergentStrategies = await this.detectEmergentStrategies(session);
behaviors.push(...emergentStrategies.map(s => ({
type: 'emergent_strategy',
strength: s.novelty,
description: s.description,
strategy: s
})));
return {
behaviors,
complexity: await this.complexityMeasurer.measure(session),
novelty: this.assessNovelty(behaviors),
significance: this.assessSignificance(behaviors)
};
}
}
🆕 Emergent Multi-Agent Agency System - Production Implementation (v0.1.0)
Overview
The Emergent Agency System enables dynamic multi-agent coordination where agents autonomously decompose complex goals, spawn adaptive roles, and produce structured outputs. This is a production-ready implementation (not theoretical) that powers real-world multi-GMI workflows.
Architecture
Core Components
-
EmergentAgencyCoordinator (
backend/src/integrations/agentos/EmergentAgencyCoordinator.ts)- Decomposes goals into concrete, actionable tasks via LLM analysis
- Assigns tasks to roles (existing or newly spawned) based on capability matching
- Manages shared context for inter-agent coordination
- Tracks coordination events and shared knowledge
-
StaticAgencyCoordinator (
backend/src/integrations/agentos/StaticAgencyCoordinator.ts)- Provides deterministic execution with predefined roles and tasks
- Topological sorting for dependency-based execution
- Validation of task graphs (no cycles, all deps exist)
- Lower latency and cost vs emergent mode
-
MultiGMIAgencyExecutor (
backend/src/integrations/agentos/MultiGMIAgencyExecutor.ts)- Orchestrates parallel GMI instance spawning (one per role)
- Handles error recovery with configurable retry logic
- Aggregates costs and usage across all seats
- Streams real-time progress via SSE
- Persists state to database for history/replay
-
Agency Persistence Layer (
backend/src/integrations/agentos/agencyPersistence.service.ts)- Database tables:
agency_executions,agency_seats - Tracks execution state, seat progress, retry counts
- Stores emergent metadata (decomposed tasks, spawned roles, coordination log)
- Full audit trail with timestamps and costs
- Database tables:
Coordination Strategies
Emergent Mode (Default)
When to use:
- Complex, open-ended goals
- Optimal structure is unclear
- Need adaptive behavior
- Flexibility > predictability
How it works:
- Planner persona analyzes goal → returns decomposed tasks
- Coordinator assigns tasks to roles → spawns new roles if needed
- Executor spawns GMI instances in parallel
- Each GMI processes its assigned instruction
- Results consolidated and formatted
Cost/Latency:
- Decomposition: ~2-5s, ~$0.001-0.002
- Per-seat execution: ~10-30s, ~$0.003-0.008
- Total (2 seats): ~13-36s, ~$0.007-0.018
Example:
const result = await executor.executeAgency({
goal: "Research quantum computing and publish to Telegram",
roles: [{ roleId: "lead", personaId: "generalist", instruction: "Coordinate" }],
userId: "user123",
conversationId: "conv456",
coordinationStrategy: 'emergent' // or omit (default)
});
// System autonomously spawns:
// - researcher role (for web search + fact checking)
// - communicator role (for formatting + publishing)
// - Decomposes into 4 tasks with dependencies
Static Mode
When to use:
- Production workflows with well-defined structure
- Need deterministic behavior
- Latency/cost must be minimized
- Full control over execution order
How it works:
- Validate provided roles and tasks
- Execute in specified order (sequential, parallel, or dependency-based)
- No LLM decomposition or role spawning
- Fully predictable execution path
Cost/Latency:
- No decomposition overhead
- Per-seat execution: ~10-30s, ~$0.003-0.008
- Total (2 seats): ~10-30s, ~$0.006-0.016
Example:
const result = await executor.executeAgency({
goal: "Execute predefined research workflow",
roles: [
{ roleId: "researcher", personaId: "research-specialist", instruction: "Research topic" },
{ roleId: "publisher", personaId: "communications-manager", instruction: "Publish findings" }
],
userId: "user123",
conversationId: "conv456",
coordinationStrategy: 'static',
staticTasks: [
{ taskId: "task_1", description: "Research", assignedRoleId: "researcher", executionOrder: 1, dependencies: [] },
{ taskId: "task_2", description: "Publish", assignedRoleId: "publisher", executionOrder: 2, dependencies: ["task_1"] }
]
});
User & Conversation Segmentation
All agency/GMI interactions are properly segmented:
- ✅
userId: Identifies the end user (for auth, rate limits, memory isolation) - ✅
conversationId: Groups related interactions (shared conversation history) - ✅
sessionId: Unique per GMI seat:${conversationId}:${roleId}:${uuid} - ✅
agencyId: Unique identifier for each agency execution
Memory Isolation:
- Each GMI instance maintains separate working memory
- ConversationContext is keyed by
(userId, conversationId, gmiInstanceId) - Shared agency context is isolated per
agencyId - No cross-user or cross-conversation leakage
Example Flow:
// User A, Conversation 1
userId: "userA"
conversationId: "conv1"
agencyId: "agency_abc123"
└─ Seat 1: sessionId: "conv1:researcher:uuid1" → gmiInstanceId: "gmi-instance-xyz1"
└─ Seat 2: sessionId: "conv1:publisher:uuid2" → gmiInstanceId: "gmi-instance-xyz2"
// User A, Conversation 2 (completely isolated)
userId: "userA"
conversationId: "conv2"
agencyId: "agency_def456"
└─ Seat 1: sessionId: "conv2:analyst:uuid3" → gmiInstanceId: "gmi-instance-xyz3"
API Endpoints
Stream Agency Execution
GET /api/agentos/agency/stream
Query Parameters:
userId(required): User identifierconversationId(required): Conversation/session IDgoal(required): High-level objectiveroles(required): JSON array ofAgentRoleConfig[]outputFormat(optional):markdown|json|csv|textcoordinationStrategy(optional):emergent|static(default:emergent)workflowDefinitionId(optional): Workflow to follow
Response: Server-Sent Events (SSE) stream of AgentOSResponse chunks
List Agency Executions
GET /api/agentos/agency/executions?userId=<userId>&limit=<limit>
Returns historical executions with emergent metadata.
Get Specific Execution
GET /api/agentos/agency/executions/:agencyId
Returns execution details + all seat records.
Database Schema
-- Top-level agency execution tracking
CREATE TABLE agency_executions (
agency_id TEXT PRIMARY KEY,
user_id TEXT NOT NULL,
conversation_id TEXT NOT NULL,
goal TEXT NOT NULL,
workflow_definition_id TEXT,
status TEXT NOT NULL, -- 'pending' | 'running' | 'completed' | 'failed'
started_at INTEGER NOT NULL,
completed_at INTEGER,
duration_ms INTEGER,
total_cost_usd REAL,
total_tokens INTEGER,
output_format TEXT,
consolidated_output TEXT,
formatted_output TEXT,
emergent_metadata TEXT, -- JSON: { tasksDecomposed, rolesSpawned, coordinationLog }
error TEXT,
FOREIGN KEY (user_id) REFERENCES app_users(id) ON DELETE CASCADE
);
-- Individual role/seat execution tracking
CREATE TABLE agency_seats (
id TEXT PRIMARY KEY,
agency_id TEXT NOT NULL,
role_id TEXT NOT NULL,
persona_id TEXT NOT NULL,
gmi_instance_id TEXT,
status TEXT NOT NULL, -- 'pending' | 'running' | 'completed' | 'failed'
started_at INTEGER,
completed_at INTEGER,
output TEXT,
error TEXT,
usage_tokens INTEGER,
usage_cost_usd REAL,
retry_count INTEGER DEFAULT 0,
metadata TEXT,
FOREIGN KEY (agency_id) REFERENCES agency_executions(agency_id) ON DELETE CASCADE
);
Error Recovery & Retry Logic
Automatic Retry:
- Configurable
maxRetries(default: 2) - Configurable
retryDelayMs(default: 1000ms) - Exponential backoff optional
- Per-seat retry tracking in database
Failure Handling:
- Individual seat failures don't block other seats
- Agency marked "completed" if ≥50% seats succeed
- Full error messages and stack traces persisted
- Retry counts visible in UI
Example:
const executor = new MultiGMIAgencyExecutor({
agentOS,
maxRetries: 3,
retryDelayMs: 2000,
onChunk: (chunk) => streamToClient(chunk)
});
Output Formatting
Markdown (default):
# Agency Coordination Results
## RESEARCHER
*Persona: research-specialist*
Found 5 major breakthroughs...
---
## COMMUNICATOR
*Persona: communications-manager*
Published to @channel...
JSON:
[
{
"roleId": "researcher",
"personaId": "research-specialist",
"gmiInstanceId": "gmi-instance-xyz1",
"output": "Found 5 major breakthroughs...",
"usage": { "totalTokens": 1500, "totalCostUSD": 0.0045 }
},
...
]
CSV:
roleId,personaId,status,output
researcher,research-specialist,success,"Found 5 major breakthroughs..."
communicator,communications-manager,success,"Published to @channel..."
Workbench UI Integration
AgencyHistoryView Component (apps/agentos-client/src/components/AgencyHistoryView.tsx):
- Lists all agency executions for current user
- Expandable cards showing:
- Goal, status, duration, cost
- Seat breakdown with individual outputs
- Emergent behavior insights (tasks decomposed, roles spawned)
- Retry counts and error messages
- Real-time updates via SSE
Usage in AgencyManager:
import { AgencyHistoryView } from '@/components/AgencyHistoryView';
<AgencyHistoryView userId={currentUserId} />
Performance Characteristics
Resource Usage:
- Memory: ~50-100MB per spawned GMI instance
- Concurrency: Max 4 simultaneous seats (configurable)
- Database: ~1-5KB per execution record
Scaling:
- Tested with up to 10 concurrent agencies
- Each agency can have 2-8 seats
- Total: 20-80 concurrent GMI instances
Implementation Status
| Component | Status | Tests | Docs |
|---|---|---|---|
| EmergentAgencyCoordinator | ✅ Production | ✅ Integration | ✅ Complete |
| StaticAgencyCoordinator | ✅ Production | ✅ Integration | ✅ Complete |
| MultiGMIAgencyExecutor | ✅ Production | ✅ Integration | ✅ Complete |
| Agency Persistence | ✅ Production | ✅ Integration | ✅ Complete |
| Agency Stream Router | ✅ Production | ✅ Integration | ✅ Complete |
| Workbench UI | ✅ Production | ⏳ Playwright | ✅ Complete |
Full Documentation: EMERGENT_AGENCY_SYSTEM.md
Tool System & Orchestration - Complete Implementation
interface IToolSystem {
// Registration
register(tool: ToolDefinition): Promise<void>;
unregister(toolId: string): Promise<void>;
// Discovery
discover(requirements: ToolRequirements): Promise<Tool[]>;
// Execution
execute(toolId: string, input: any): Promise<ToolResult>;
orchestrate(plan: ToolOrchestrationPlan): Promise<OrchestrationResult>;
// Monitoring
monitor(executionId: string): AsyncGenerator<ToolEvent>;
}
class AdvancedToolSystem implements IToolSystem {
private registry: ToolRegistry;
private executor: ToolExecutor;
private orchestrator: ToolOrchestrator;
private validator: ToolValidator;
private sandbox: ToolSandbox;
private monitor: ToolMonitor;
async register(tool: ToolDefinition): Promise<void> {
// Validate tool definition
const validation = await this.validator.validate(tool);
if (!validation.valid) {
throw new Error(`Tool validation failed: ${validation.errors.join(', ')}`);
}
// Test tool in sandbox
const sandboxTest = await this.sandbox.test(tool);
if (!sandboxTest.passed) {
throw new Error(`Sandbox test failed: ${sandboxTest.error}`);
}
// Register tool
await this.registry.register({
...tool,
metadata: {
registered: Date.now(),
version: tool.version || '1.0.0',
capabilities: await this.analyzeCapabilities(tool),
performance: sandboxTest.performance,
reliability: sandboxTest.reliability
}
});
// Index for discovery
await this.registry.index(tool);
}
async orchestrate(plan: ToolOrchestrationPlan): Promise<OrchestrationResult> {
// Create execution context
const context = await this.createExecutionContext(plan);
// Build execution graph
const graph = await this.buildExecutionGraph(plan);
// Optimize execution order
const optimizedGraph = await this.optimizeGraph(graph);
// Execute orchestration
const executor = new GraphExecutor(optimizedGraph, context);
// Monitor execution
const monitorHandle = this.monitor.start(context.id);
try {
// Execute nodes in optimal order
const results = new Map<string, any>();
for await (const batch of executor.getBatches()) {
// Execute batch in parallel
const batchResults = await Promise.all(
batch.map(node => this.executeNode(node, results, context))
);
// Store results
batch.forEach((node, i) => {
results.set(node.id, batchResults[i]);
});
// Check for failures
const failures = batchResults.filter(r => !r.success);
if (failures.length > 0 && !plan.continueOnError) {
throw new Error(`Tool execution failed: ${failures[0].error}`);
}
}
// Synthesize results
const synthesized = await this.synthesizeResults(results, plan);
return {
success: true,
results: synthesized,
execution: {
duration: Date.now() - context.startTime,
toolsExecuted: results.size,
parallelism: executor.getParallelismStats()
}
};
} finally {
monitorHandle.stop();
}
}
private async executeNode(
node: ExecutionNode,
previousResults: Map<string, any>,
context: ExecutionContext
): Promise<NodeResult> {
// Resolve inputs from previous results
const inputs = await this.resolveInputs(node, previousResults);
// Get tool
const tool = await this.registry.get(node.toolId);
// Validate inputs
const validation = await this.validator.validateInputs(inputs, tool.inputSchema);
if (!validation.valid) {
return {
success: false,
error: `Input validation failed: ${validation.errors.join(', ')}`
};
}
// Execute with retry logic
let lastError: Error;
for (let attempt = 0; attempt < (node.retries || 1); attempt++) {
try {
// Execute in sandbox if required
const result = node.sandbox
? await this.sandbox.execute(tool, inputs, context)
: await this.executor.execute(tool, inputs, context);
// Validate output
const outputValidation = await this.validator.validateOutput(
result,
tool.outputSchema
);
if (!outputValidation.valid) {
throw new Error(`Output validation failed: ${outputValidation.errors.join(', ')}`);
}
return {
success: true,
output: result,
execution: {
attempt: attempt + 1,
duration: Date.now() - context.startTime,
toolId: node.toolId
}
};
} catch (error) {
lastError = error;
if (attempt < (node.retries || 1) - 1) {
// Wait before retry with exponential backoff
await this.delay(Math.pow(2, attempt) * 1000);
}
}
}
return {
success: false,
error: lastError.message,
toolId: node.toolId
};
}
}
// Tool capability analyzer
class ToolCapabilityAnalyzer {
async analyzeCapabilities(tool: ToolDefinition): Promise<ToolCapabilities> {
const capabilities: ToolCapabilities = {
domains: [],
operations: [],
dataTypes: [],
complexity: 'low',
reliability: 0,
performance: {
latency: { p50: 0, p95: 0, p99: 0 },
throughput: 0,
resourceUsage: { cpu: 0, memory: 0 }
}
};
// Analyze input/output schemas
capabilities.dataTypes = this.extractDataTypes(tool.inputSchema, tool.outputSchema);
// Analyze operations
capabilities.operations = await this.inferOperations(tool);
// Analyze domains
capabilities.domains = await this.inferDomains(tool);
// Assess complexity
capabilities.complexity = this.assessComplexity(tool);
// Estimate reliability
capabilities.reliability = await this.estimateReliability(tool);
// Profile performance
if (tool.performanceProfile) {
capabilities.performance = tool.performanceProfile;
} else {
capabilities.performance = await this.profilePerformance(tool);
}
return capabilities;
}
private extractDataTypes(inputSchema: any, outputSchema: any): string[] {
const types = new Set<string>();
const extractFromSchema = (schema: any) => {
if (schema.type) types.add(schema.type);
if (schema.properties) {
Object.values(schema.properties).forEach(extractFromSchema);
}
if (schema.items) extractFromSchema(schema.items);
};
extractFromSchema(inputSchema);
extractFromSchema(outputSchema);
return Array.from(types);
}
}
Guardrail Service & Constitutional AI - Complete Implementation
interface IGuardrailService {
// Evaluation
evaluateInput(input: GuardrailInput): Promise<GuardrailResult>;
evaluateOutput(output: GuardrailOutput): Promise<GuardrailResult>;
evaluateStream(stream: AsyncGenerator<string>): AsyncGenerator<GuardrailStreamResult>;
// Constitutional AI
applyConstitution(content: string, context: ConstitutionalContext): Promise<ConstitutionalResult>;
// Policy management
addPolicy(policy: GuardrailPolicy): void;
removePolicy(policyId: string): void;
updatePolicy(policyId: string, updates: Partial<GuardrailPolicy>): void;
}
class AdvancedGuardrailService implements IGuardrailService {
private inputGuardrails: GuardrailChain;
private outputGuardrails: GuardrailChain;
private constitutionalAI: ConstitutionalAI;
private policyEngine: PolicyEngine;
private auditLogger: AuditLogger;
async evaluateInput(input: GuardrailInput): Promise<GuardrailResult> {
const startTime = Date.now();
// Run through guardrail chain
let result = await this.inputGuardrails.evaluate(input);
// Apply constitutional AI
if (result.action !== 'BLOCK') {
const constitutional = await this.constitutionalAI.evaluate(input.content, {
type: 'input',
context: input.context
});
if (constitutional.violation) {
result = {
action: constitutional.severity === 'high' ? 'BLOCK' : 'FLAG',
reason: constitutional.reason,
constitutional: constitutional
};
}
}
// Log for audit
await this.auditLogger.log({
type: 'input_evaluation',
input,
result,
duration: Date.now() - startTime
});
return result;
}
async evaluateOutput(output: GuardrailOutput): Promise<GuardrailResult> {
// Multi-layer evaluation
const evaluations = await Promise.all([
this.evaluateSafety(output),
this.evaluateAccuracy(output),
this.evaluateBias(output),
this.evaluateCompliance(output),
this.evaluateEthics(output)
]);
// Combine results with priority
return this.combineEvaluations(evaluations);
}
private async evaluateSafety(output: GuardrailOutput): Promise<SafetyEvaluation> {
const checks = {
toxicity: await this.checkToxicity(output.content),
violence: await this.checkViolence(output.content),
selfHarm: await this.checkSelfHarm(output.content),
sexual: await this.checkSexualContent(output.content),
minorSafety: await this.checkMinorSafety(output.content),
pii: await this.checkPII(output.content)
};
const issues = Object.entries(checks)
.filter(([_, result]) => result.detected)
.map(([type, result]) => ({
type,
severity: result.severity,
confidence: result.confidence,
location: result.location
}));
return {
safe: issues.length === 0,
issues,
overallSeverity: this.calculateOverallSeverity(issues),
action: this.determineAction(issues)
};
}
async *evaluateStream(
stream: AsyncGenerator<string>
): AsyncGenerator<GuardrailStreamResult> {
let buffer = '';
let chunkIndex = 0;
for await (const chunk of stream) {
buffer += chunk;
// Evaluate chunk
const chunkResult = await this.evaluateChunk(chunk, buffer, chunkIndex);
if (chunkResult.action === 'BLOCK') {
// Stop stream
yield {
type: 'blocked',
reason: chunkResult.reason,
chunkIndex
};
return;
}
if (chunkResult.action === 'SANITIZE') {
// Sanitize and continue
yield {
type: 'sanitized',
content: chunkResult.sanitized,
original: chunk,
chunkIndex
};
} else {
// Pass through
yield {
type: 'allowed',
content: chunk,
chunkIndex
};
}
chunkIndex++;
}
}
}
// Constitutional AI implementation
class ConstitutionalAI {
private principles: ConstitutionalPrinciple[];
private reasoningEngine: EthicalReasoningEngine;
private contextAnalyzer: ContextAnalyzer;
async evaluate(
content: string,
context: ConstitutionalContext
): Promise<ConstitutionalResult> {
// Analyze content against each principle
const evaluations = await Promise.all(
this.principles.map(principle =>
this.evaluatePrinciple(content, principle, context)
)
);
// Find violations
const violations = evaluations.filter(e => e.violated);
if (violations.length === 0) {
return { violation: false };
}
// Reason about violations
const reasoning = await this.reasoningEngine.reason(violations, context);
// Determine action
const action = this.determineAction(reasoning);
return {
violation: true,
violated_principles: violations.map(v => v.principle),
reasoning: reasoning.explanation,
severity: reasoning.severity,
action: action.type,
remediation: action.remediation
};
}
private async evaluatePrinciple(
content: string,
principle: ConstitutionalPrinciple,
context: ConstitutionalContext
): Promise<PrincipleEvaluation> {
// Check if principle applies to context
if (!this.principleApplies(principle, context)) {
return { principle: principle.id, violated: false };
}
// Evaluate content against principle
const checks = await Promise.all(
principle.checks.map(check => this.runCheck(content, check, context))
);
// Determine if violated
const violated = principle.logic === 'any'
? checks.some(c => c.failed)
: checks.every(c => c.failed);
return {
principle: principle.id,
violated,
checks: checks.filter(c => c.failed),
confidence: this.calculateConfidence(checks),
context_factors: this.extractContextFactors(context)
};
}
}
// Ethical reasoning engine
class EthicalReasoningEngine {
private ethicalFrameworks: EthicalFramework[];
private moralCalculus: MoralCalculus;
async reason(
violations: PrincipleViolation[],
context: ConstitutionalContext
): Promise<EthicalReasoning> {
// Apply multiple ethical frameworks
const frameworkAnalyses = await Promise.all(
this.ethicalFrameworks.map(framework =>
this.applyFramework(violations, context, framework)
)
);
// Synthesize perspectives
const synthesis = this.synthesizeEthicalPerspectives(frameworkAnalyses);
// Calculate moral weight
const moralWeight = await this.moralCalculus.calculate(violations, context);
// Generate explanation
const explanation = this.generateEthicalExplanation(
synthesis,
moralWeight,
context
);
return {
frameworks_applied: frameworkAnalyses,
synthesis,
moral_weight: moralWeight,
explanation,
severity: this.determineSeverity(moralWeight),
recommended_action: this.recommendAction(synthesis, moralWeight)
};
}
private async applyFramework(
violations: PrincipleViolation[],
context: ConstitutionalContext,
framework: EthicalFramework
): Promise<FrameworkAnalysis> {
switch (framework.type) {
case 'deontological':
return this.applyDeontological(violations, context);
case 'consequentialist':
return this.applyConsequentialist(violations, context);
case 'virtue_ethics':
return this.applyVirtueEthics(violations, context);
case 'care_ethics':
return this.applyCareEthics(violations, context);
default:
return this.applyCustomFramework(violations, context, framework);
}
}
}
Learning System - Complete Implementation
interface ILearningSystem {
// Learning mechanisms
learn(experience: Experience): Promise<LearningOutcome>;
reinforce(action: Action, reward: number): Promise<void>;
// Pattern learning
learnPattern(pattern: Pattern): Promise<void>;
recognizePattern(input: any): Promise<Pattern[]>;
// Transfer learning
transfer(sourceKnowledge: Knowledge, targetDomain: Domain): Promise<TransferResult>;
// Meta-learning
optimizeLearning(history: LearningHistory): Promise<LearningStrategy>;
}
class AdvancedLearningSystem implements ILearningSystem {
private reinforcementLearning: ReinforcementLearning;
private patternLearning: PatternLearning;
private transferLearning: TransferLearning;
private metaLearning: MetaLearning;
private memoryConsolidation: MemoryConsolidation;
async learn(experience: Experience): Promise<LearningOutcome> {
// Multi-modal learning
const learningResults = await Promise.all([
this.learnFromFeedback(experience.feedback),
this.learnFromOutcome(experience.outcome),
this.learnFromPattern(experience.patterns),
this.learnFromError(experience.errors),
this.learnFromSuccess(experience.successes)
]);
// Consolidate learning
const consolidated = await this.consolidateLearning(learningResults);
// Update knowledge base
await this.updateKnowledge(consolidated);
// Adapt strategies
await this.adaptStrategies(consolidated);
return {
learned: consolidated.insights,
improved: consolidated.improvements,
adapted: consolidated.adaptations,
confidence: consolidated.confidence
};
}
private async learnFromFeedback(feedback: Feedback): Promise<FeedbackLearning> {
if (!feedback) return null;
// Analyze feedback sentiment
const sentiment = await this.analyzeSentiment(feedback);
// Extract actionable insights
const insights = await this.extractInsights(feedback);
// Update preference model
await this.updatePreferences(insights, sentiment);
// Adjust behavior parameters
const adjustments = this.calculateAdjustments(sentiment, insights);
return {
sentiment,
insights,
adjustments,
strength: feedback.confidence || sentiment.confidence
};
}
async reinforce(action: Action, reward: number): Promise<void> {
// Update Q-values
await this.reinforcementLearning.updateQValue(
action.state,
action.action,
reward,
action.nextState
);
// Update policy
await this.reinforcementLearning.updatePolicy(action, reward);
// Store experience
await this.reinforcementLearning.storeExperience({
state: action.state,
action: action.action,
reward: reward,
nextState: action.nextState,
done: action.done
});
// Periodic experience replay
if (this.shouldReplay()) {
await this.reinforcementLearning.experienceReplay();
}
}
}
// Reinforcement learning engine
class ReinforcementLearning {
private qTable: Map<string, Map<string, number>>;
private policy: Policy;
private experienceBuffer: ExperienceBuffer;
private optimizer: Optimizer;
async updateQValue(
state: State,
action: string,
reward: number,
nextState: State
): Promise<void> {
const stateKey = this.encodeState(state);
const nextStateKey = this.encodeState(nextState);
// Get current Q-value
const currentQ = this.getQValue(stateKey, action);
// Get max Q-value for next state
const maxNextQ = this.getMaxQValue(nextStateKey);
// Calculate new Q-value using Bellman equation
const newQ = currentQ + this.learningRate * (
reward + this.discountFactor * maxNextQ - currentQ
);
// Update Q-table
this.setQValue(stateKey, action, newQ);
// Update eligibility traces if using TD(λ)
if (this.usesEligibilityTraces) {
await this.updateEligibilityTraces(stateKey, action);
}
}
async experienceReplay(batchSize: number = 32): Promise<void> {
// Sample experiences from buffer
const batch = this.experienceBuffer.sample(batchSize);
for (const experience of batch) {
// Update Q-value for each experience
await this.updateQValue(
experience.state,
experience.action,
experience.reward,
experience.nextState
);
}
// Update target network if using DQN
if (this.usesDQN && this.shouldUpdateTarget()) {
this.updateTargetNetwork();
}
}
}
// Pattern learning engine
class PatternLearning {
private patternLibrary: PatternLibrary;
private patternMatcher: PatternMatcher;
private abstractionEngine: AbstractionEngine;
async learnPattern(pattern: Pattern): Promise<void> {
// Check if pattern exists
const existing = await this.patternLibrary.find(pattern);
if (existing) {
// Reinforce existing pattern
await this.reinforcePattern(existing, pattern);
} else {
// Learn new pattern
await this.addNewPattern(pattern);
}
// Check for meta-patterns
const metaPatterns = await this.detectMetaPatterns(pattern);
if (metaPatterns.length > 0) {
for (const meta of metaPatterns) {
await this.learnPattern(meta);
}
}
// Update abstraction hierarchy
await this.updateAbstractions(pattern);
}
async recognizePattern(input: any): Promise<Pattern[]> {
// Extract features
const features = await this.extractFeatures(input);
// Match against known patterns
const matches = await this.patternMatcher.match(features);
// Apply abstraction to find higher-level patterns
const abstractPatterns = await this.abstractionEngine.abstract(matches);
// Combine and rank
const allPatterns = [...matches, ...abstractPatterns];
const ranked = this.rankPatterns(allPatterns);
return ranked;
}
private async detectMetaPatterns(pattern: Pattern): Promise<Pattern[]> {
// Look for patterns of patterns
const relatedPatterns = await this.patternLibrary.findRelated(pattern);
const metaPatterns: Pattern[] = [];
// Sequence meta-patterns
const sequences = this.findSequences(pattern, relatedPatterns);
metaPatterns.push(...sequences);
// Hierarchical meta-patterns
const hierarchies = this.findHierarchies(pattern, relatedPatterns);
metaPatterns.push(...hierarchies);
// Compositional meta-patterns
const compositions = this.findCompositions(pattern, relatedPatterns);
metaPatterns.push(...compositions);
return metaPatterns;
}
}
// Meta-learning engine
class MetaLearning {
private learningHistory: LearningHistory;
private strategyOptimizer: StrategyOptimizer;
private performanceAnalyzer: PerformanceAnalyzer;
async optimizeLearning(history: LearningHistory): Promise<LearningStrategy> {
// Analyze learning performance
const performance = await this.performanceAnalyzer.analyze(history);
// Identify successful strategies
const successfulStrategies = this.identifySuccessfulStrategies(
history,
performance
);
// Identify failed strategies
const failedStrategies = this.identifyFailedStrategies(
history,
performance
);
// Generate new strategy
const optimizedStrategy = await this.strategyOptimizer.optimize({
current: history.currentStrategy,
successful: successfulStrategies,
failed: failedStrategies,
performance: performance,
constraints: history.constraints
});
// Validate strategy
const validation = await this.validateStrategy(optimizedStrategy);
return validation.valid ? optimizedStrategy : history.currentStrategy;
}
async learnToLearn(experiences: Experience[]): Promise<MetaLearningResult> {
// Analyze learning patterns
const learningPatterns = this.analyzeLearningPatterns(experiences);
// Identify optimal learning rates
const optimalRates = this.findOptimalLearningRates(experiences);
// Discover effective features
const effectiveFeatures = this.discoverEffectiveFeatures(experiences);
// Build meta-model
const metaModel = await this.buildMetaModel({
patterns: learningPatterns,
rates: optimalRates,
features: effectiveFeatures
});
return {
metaModel,
improvements: this.calculateImprovements(metaModel),
insights: this.extractMetaInsights(metaModel)
};
}
}
Performance Optimization System - Complete Implementation
interface IPerformanceOptimizer {
// Optimization strategies
optimizeLatency(component: Component): Promise<LatencyOptimization>;
optimizeThroughput(system: System): Promise<ThroughputOptimization>;
optimizeResourceUsage(resources: Resources): Promise<ResourceOptimization>;
// Caching
optimizeCache(cache: CacheSystem): Promise<CacheOptimization>;
// Batching
optimizeBatching(operations: Operation[]): Promise<BatchOptimization>;
}
class AdvancedPerformanceOptimizer implements IPerformanceOptimizer {
private latencyAnalyzer: LatencyAnalyzer;
private throughputOptimizer: ThroughputOptimizer;
private resourceManager: ResourceManager;
private cacheOptimizer: CacheOptimizer;
private batchingEngine: BatchingEngine;
private profiler: Profiler;
async optimizeLatency(component: Component): Promise<LatencyOptimization> {
// Profile current latency
const profile = await this.profiler.profileLatency(component);
// Identify bottlenecks
const bottlenecks = this.latencyAnalyzer.identifyBottlenecks(profile);
// Generate optimization strategies
const strategies = await this.generateLatencyStrategies(bottlenecks);
// Simulate optimizations
const simulations = await Promise.all(
strategies.map(s => this.simulateOptimization(component, s))
);
// Select best strategy
const bestStrategy = this.selectBestStrategy(simulations);
// Apply optimization
const result = await this.applyOptimization(component, bestStrategy);
return {
original: profile,
optimized: result,
improvement: this.calculateImprovement(profile, result),
strategy: bestStrategy
};
}
async optimizeCache(cache: CacheSystem): Promise<CacheOptimization> {
// Analyze cache patterns
const patterns = await this.cacheOptimizer.analyzePatterns(cache);
// Optimize cache size
const optimalSize = this.cacheOptimizer.calculateOptimalSize(patterns);
// Optimize eviction policy
const optimalPolicy = this.cacheOptimizer.selectEvictionPolicy(patterns);
// Optimize cache distribution
const distribution = this.cacheOptimizer.optimizeDistribution(patterns);
// Implement prefetching
const prefetching = await this.cacheOptimizer.implementPrefetching(patterns);
return {
size: optimalSize,
policy: optimalPolicy,
distribution,
prefetching,
expectedHitRate: this.calculateExpectedHitRate(patterns, optimalPolicy)
};
}
}
// Intelligent caching system
class IntelligentCacheSystem {
private cache: MultiLevelCache;
private predictor: AccessPredictor;
private prefetcher: Prefetcher;
private adaptivePolicy: AdaptiveEvictionPolicy;
async get(key: string): Promise<any> {
// Check cache levels
let value = await this.cache.get(key);
if (value) {
// Update access patterns
this.updateAccessPattern(key, 'hit');
// Predict future accesses
const predictions = await this.predictor.predict(key);
// Prefetch related items
if (predictions.relatedItems.length > 0) {
this.prefetcher.prefetch(predictions.relatedItems);
}
return value;
}
// Cache miss
this.updateAccessPattern(key, 'miss');
// Fetch value
value = await this.fetchValue(key);
// Determine cache level
const level = this.determineCacheLevel(key, value);
// Store in cache
await this.cache.set(key, value, level);
return value;
}
private determineCacheLevel(key: string, value: any): CacheLevel {
// Consider multiple factors
const factors = {
size: this.calculateSize(value),
accessFrequency: this.getAccessFrequency(key),
computationCost: this.estimateComputationCost(key),
staleness: this.estimateStaleness(key),
importance: this.estimateImportance(key)
};
// Apply decision logic
if (factors.accessFrequency > 0.8 && factors.size < 1000) {
return 'L1'; // Hot cache
} else if (factors.accessFrequency > 0.5 || factors.computationCost > 0.7) {
return 'L2'; // Warm cache
} else {
return 'L3'; // Cold cache
}
}
}
// Batching optimization
class BatchingEngine {
private batchQueue: Map<string, Operation[]>;
private batchScheduler: BatchScheduler;
async optimizeBatching(operations: Operation[]): Promise<BatchOptimization> {
// Group operations by type
const grouped = this.groupOperations(operations);
// Determine optimal batch sizes
const batchSizes = await this.calculateOptimalBatchSizes(grouped);
// Create batch schedule
const schedule = await this.batchScheduler.createSchedule(grouped, batchSizes);
// Optimize execution order
const optimizedSchedule = this.optimizeExecutionOrder(schedule);
return {
schedule: optimizedSchedule,
expectedLatency: this.estimateLatency(optimizedSchedule),
expectedThroughput: this.estimateThroughput(optimizedSchedule),
resourceUsage: this.estimateResourceUsage(optimizedSchedule)
};
}
private calculateOptimalBatchSizes(
grouped: Map<string, Operation[]>
): Map<string, number> {
const batchSizes = new Map<string, number>();
for (const [type, ops] of grouped) {
// Consider multiple factors
const factors = {
overhead: this.estimateOverhead(type),
parallelism: this.getMaxParallelism(type),
latencyTarget: this.getLatencyTarget(type),
resourceConstraints: this.getResourceConstraints(type)
};
// Calculate optimal size
const optimalSize = this.calculateOptimalSize(ops.length, factors);
batchSizes.set(type, optimalSize);
}
return batchSizes;
}
}
Monitoring & Analytics System - Complete Implementation
interface IMonitoringSystem {
// Metrics collection
recordMetric(metric: Metric): void;
// Tracing
startSpan(name: string, parent?: Span): Span;
// Logging
log(level: LogLevel, message: string, context?: any): void;
// Analytics
analyze(query: AnalyticsQuery): Promise<AnalyticsResult>;
// Alerting
alert(condition: AlertCondition): void;
}
class AdvancedMonitoringSystem implements IMonitoringSystem {
private metricsCollector: MetricsCollector;
private tracer: DistributedTracer;
private logger: StructuredLogger;
private analyticsEngine: AnalyticsEngine;
private alertManager: AlertManager;
private dashboard: DashboardSystem;
recordMetric(metric: Metric): void {
// Add metadata
const enriched = this.enrichMetric(metric);
// Store metric
this.metricsCollector.record(enriched);
// Check alert conditions
this.checkAlerts(enriched);
// Update dashboard
this.dashboard.update(enriched);
// Stream to analytics
this.analyticsEngine.ingest(enriched);
}
startSpan(name: string, parent?: Span): Span {
const span = this.tracer.startSpan(name, {
parent,
timestamp: Date.now(),
metadata: {
service: 'agentos',
version: process.env.VERSION,
environment: process.env.ENVIRONMENT
}
});
// Auto-instrumentation
this.instrumentSpan(span);
return span;
}
async analyze(query: AnalyticsQuery): Promise<AnalyticsResult> {
// Parse query
const parsed = this.parseQuery(query);
// Execute analytics
const result = await this.analyticsEngine.execute(parsed);
// Post-process results
const processed = this.postProcess(result);
// Generate insights
const insights = await this.generateInsights(processed);
return {
data: processed,
insights,
metadata: {
query: query,
executionTime: result.executionTime,
dataPoints: result.dataPoints
}
};
}
}
// Distributed tracing implementation
class DistributedTracer {
private spans: Map<string, SpanData>;
private exporter: SpanExporter;
startSpan(name: string, options: SpanOptions): Span {
const spanId = this.generateSpanId();
const traceId = options.parent?.traceId || this.generateTraceId();
const spanData: SpanData = {
spanId,
traceId,
parentSpanId: options.parent?.spanId,
name,
startTime: Date.now(),
attributes: {},
events: [],
status: 'in_progress'
};
this.spans.set(spanId, spanData);
return new Span(spanId, this);
}
endSpan(spanId: string, status: SpanStatus): void {
const spanData = this.spans.get(spanId);
if (!spanData) return;
spanData.endTime = Date.now();
spanData.duration = spanData.endTime - spanData.startTime;
spanData.status = status;
// Export span
this.exporter.export(spanData);
// Calculate metrics
this.calculateSpanMetrics(spanData);
}
private calculateSpanMetrics(span: SpanData): void {
// Latency percentiles
this.recordLatencyPercentile(span.name, span.duration);
// Error rate
if (span.status === 'error') {
this.incrementErrorCount(span.name);
}
// Throughput
this.updateThroughput(span.name);
}
}
// Analytics engine
class AnalyticsEngine {
private queryEngine: QueryEngine;
private aggregator: Aggregator;
private insightGenerator: InsightGenerator;
async execute(query: ParsedQuery): Promise<QueryResult> {
// Retrieve data
const data = await this.queryEngine.getData(query);
// Apply aggregations
const aggregated = await this.aggregator.aggregate(data, query.aggregations);
// Apply filters
const filtered = this.applyFilters(aggregated, query.filters);
// Apply grouping
const grouped = this.applyGrouping(filtered, query.groupBy);
// Calculate statistics
const statistics = this.calculateStatistics(grouped);
return {
data: grouped,
statistics,
executionTime: Date.now() - query.startTime,
dataPoints: grouped.length
};
}
async generateInsights(data: ProcessedData): Promise<Insight[]> {
const insights: Insight[] = [];
// Trend analysis
const trends = await this.analyzeTrends(data);
insights.push(...trends.map(t => ({
type: 'trend',
description: t.description,
significance: t.significance,
recommendation: t.recommendation
})));
// Anomaly detection
const anomalies = await this.detectAnomalies(data);
insights.push(...anomalies.map(a => ({
type: 'anomaly',
description: a.description,
severity: a.severity,
action: a.suggestedAction
})));
// Pattern recognition
const patterns = await this.recognizePatterns(data);
insights.push(...patterns.map(p => ({
type: 'pattern',
description: p.description,
confidence: p.confidence,
implication: p.implication
})));
return insights;
}
}
GMI RAG Memory Integration & Configuration
Overview
The GMI (Generalized Mind Instance) integrates with the RAG system through configurable hooks that enable:
- Conversation Memory Persistence: Store conversation summaries in RAG for long-term recall
- Context-Aware Retrieval: Augment prompts with relevant historical context
- Memory Lifecycle Management: Negotiate memory retention with the MemoryLifecycleManager
- Agency Shared Memory: (Planned) Share knowledge across GMIs in an Agency
Configuration Hierarchy
Persona Definition
├── memoryConfig
│ ├── enabled: boolean
│ ├── conversationContext ← Working memory settings
│ └── ragConfig ← RAG integration settings
│ ├── enabled: boolean (NOT default, must enable)
│ ├── retrievalTriggers
│ │ ├── onUserQuery: boolean
│ │ ├── onIntentDetected: string[]
│ │ └── onToolFailure: string[]
│ ├── ingestionTriggers
│ │ ├── onTurnSummary: boolean
│ │ └── onExplicitUserCommand: string
│ ├── ingestionProcessing
│ │ └── summarization: { enabled, targetLength, method }
│ ├── dataSources: PersonaRagDataSourceConfig[]
│ └── defaultIngestionDataSourceId: string
GMI RAG Hooks
The GMI implements the following RAG integration points:
// Hook 1: Retrieval Trigger (GMI.ts:479)
private shouldTriggerRAGRetrieval(query: string): boolean {
const ragConfig = this.activePersona.memoryConfig?.ragConfig;
if (ragConfig?.retrievalTriggers?.onUserQuery) {
return true;
}
return false;
}
// Hook 2: Context Retrieval (GMI.ts:535-547)
if (this.retrievalAugmentor && ragConfig?.enabled && isUserInitiatedTurn) {
if (this.shouldTriggerRAGRetrieval(currentQueryForRag)) {
const ragResult = await this.retrievalAugmentor.retrieveContext(
currentQueryForRag,
retrievalOptions
);
augmentedContextFromRAG = ragResult.augmentedContext;
}
}
// Hook 3: Post-Turn Ingestion (GMI.ts:850-905)
private async performPostTurnIngestion(userInput: string, gmiResponse: string) {
if (!this.retrievalAugmentor ||
!ragConfig?.enabled ||
!ingestionTriggers?.onTurnSummary) {
return; // Must be explicitly enabled
}
// Summarize and ingest turn to RAG
}
// Hook 4: Memory Lifecycle Negotiation (GMI.ts:1090)
public async onMemoryLifecycleEvent(event: MemoryLifecycleEvent): Promise<LifecycleActionResponse> {
// GMI can PREVENT_ACTION, ALLOW_ACTION, etc.
}
Enabling Conversation Memory RAG
To enable conversation memory persistence to RAG:
{
"id": "my-persona",
"memoryConfig": {
"enabled": true,
"ragConfig": {
"enabled": true,
"retrievalTriggers": {
"onUserQuery": true
},
"ingestionTriggers": {
"onTurnSummary": true
},
"ingestionProcessing": {
"summarization": {
"enabled": true,
"targetLength": "short",
"method": "abstractive_llm"
}
},
"dataSources": [{
"id": "persona-memory",
"dataSourceNameOrId": "conversation_summaries",
"isEnabled": true,
"defaultTopK": 5
}],
"defaultIngestionDataSourceId": "conversation_summaries"
},
"lifecycleConfig": {
"negotiationEnabled": true
}
}
}
RAG Memory Categories
The RagMemoryCategory enum defines logical memory categories:
| Category | Description | Use Case |
|---|---|---|
SHARED_KNOWLEDGE_BASE | Global knowledge accessible to all | Documentation, FAQs |
USER_EXPLICIT_MEMORY | User-saved notes/preferences | "Remember this" commands |
PERSONAL_LLM_EXPERIENCE | GMI's learned patterns | Self-improvement |
CONVERSATION_HISTORY | Historical conversation summaries | Context recall |
TASK_ARTIFACTS | Outputs from completed tasks | Reference materials |
Agency Shared Memory (Planned)
Future implementations will support agency-level RAG:
interface AgencyMemoryConfig {
enabled: boolean;
sharedDataSourceIds: string[];
crossGMIContextSharing: boolean;
memoryVisibility: 'all_seats' | 'same_role' | 'explicit_grant';
}
Memory Flow Diagram
User Query
↓
┌─────────────────────────────────────────┐
│ GMI.processTurnStream() │
│ │
│ 1. shouldTriggerRAGRetrieval(query) │
│ ↓ (if true) │
│ 2. retrievalAugmentor.retrieveContext() │
│ ↓ │
│ 3. Inject into PromptComponents │
│ ↓ │
│ 4. LLM generates response │
│ ↓ │
│ 5. performPostTurnIngestion() │
│ ↓ (if ingestionTriggers.onTurnSummary)│
│ 6. Summarize → Embed → Store in RAG │
└─────────────────────────────────────────┘
↓
Response to User
Integration with Memory Lifecycle Manager
The MemoryLifecycleManager enforces retention policies:
// Policy-driven eviction with GMI negotiation
const policy: MemoryLifecyclePolicy = {
policyId: "conversation-cleanup",
retentionDays: 90,
appliesTo: {
categories: [RagMemoryCategory.CONVERSATION_HISTORY]
},
action: {
type: "summarize_and_delete",
summaryDataSourceId: "long_term_summaries"
},
gmiNegotiation: {
enabled: true,
defaultActionOnTimeout: "ALLOW_ACTION"
}
};
🆕 Planning Engine - Autonomous Goal Pursuit (v1.1.0)
Overview
The Planning Engine enables GMIs and Agencies to perform complex, multi-step reasoning and autonomous goal pursuit. Unlike simpler agent frameworks that rely on single-turn LLM calls, the Planning Engine implements the ReAct (Reasoning and Acting) pattern for robust, self-correcting behavior.
Architecture
Core Concepts
ExecutionPlan
A structured representation of steps to achieve a goal:
interface ExecutionPlan {
planId: string;
goal: string;
steps: PlanStep[];
dependencies: Map<string, string[]>;
estimatedTokens?: number;
confidenceScore?: number;
createdAt: string;
status: 'draft' | 'executing' | 'paused' | 'completed' | 'failed';
}
PlanStep
Atomic units of action within a plan:
interface PlanStep {
stepId: string;
description: string;
actionType: 'tool_call' | 'gmi_action' | 'human_input' | 'sub_plan' | 'reflection' | 'communication';
toolId?: string;
toolArgs?: Record<string, unknown>;
dependsOn?: string[];
estimatedTokens?: number;
confidence?: number;
}
Key Capabilities
- Plan Generation: Convert high-level goals into multi-step execution plans
- Task Decomposition: Break complex tasks into manageable subtasks
- Plan Refinement: Adapt plans based on execution feedback
- Autonomous Loops: Continuous plan-execute-reflect cycles
Usage Example
import { PlanningEngine } from '@framers/agentos/core/planning';
const planningEngine = new PlanningEngine(
promptEngine,
llmProviderManager,
toolOrchestrator,
retrievalAugmentor
);
// Generate a plan
const plan = await planningEngine.generatePlan(
'Research and summarize quantum computing advances',
planningContext
);
// Run autonomous loop
const autonomousLoop = planningEngine.runAutonomousLoop(goal, context, {
maxCycles: 10,
humanInTheLoop: true,
});
for await (const chunk of autonomousLoop) {
console.log(`Progress: ${chunk.content}`);
}
API Endpoints
| Endpoint | Method | Description |
|---|---|---|
/api/agentos/planning/plans | GET | List all plans |
/api/agentos/planning/plans | POST | Generate new plan |
/api/agentos/planning/plans/:id | GET | Get plan details |
/api/agentos/planning/plans/:id/execute | POST | Start execution |
/api/agentos/planning/plans/:id/pause | POST | Pause execution |
/api/agentos/planning/plans/:id/refine | POST | Refine with feedback |
🆕 Human-in-the-Loop (HITL) System (v1.1.0)
Overview
The Human-in-the-Loop Manager enables structured collaboration between AI agents and human operators for:
- High-stakes decisions requiring human judgment
- Ambiguous situations needing clarification
- Quality assurance and output review
- Learning from human corrections
Architecture
Request Types
1. Approval Requests
For high-risk actions requiring explicit human approval:
interface PendingAction {
actionId: string;
description: string;
severity: 'low' | 'medium' | 'high' | 'critical';
category: 'data_modification' | 'external_api' | 'financial' | 'communication';
context: Record<string, unknown>;
reversible: boolean;
potentialConsequences?: string[];
}
2. Clarification Requests
For resolving ambiguous situations:
interface ClarificationRequest {
requestId: string;
question: string;
clarificationType: 'ambiguity' | 'missing_info' | 'preference' | 'verification';
options?: ClarificationOption[];
allowFreeform: boolean;
}
3. Escalations
For transferring control to humans:
interface EscalationContext {
reason: 'low_confidence' | 'repeated_failures' | 'safety_concern' | 'ethical_concern';
explanation: string;
attemptedActions: string[];
recommendations?: string[];
urgency: 'low' | 'medium' | 'high' | 'critical';
}
Usage Example
import { HumanInteractionManager } from '@framers/agentos/core/hitl';
const hitlManager = new HumanInteractionManager({
defaultTimeoutMs: 300000, // 5 minutes
notificationHandler: async (notification) => {
await slackClient.sendMessage(notification);
},
});
// Request approval before critical action
const decision = await hitlManager.requestApproval({
actionId: 'delete-records',
description: 'Delete 5000 inactive user accounts',
severity: 'critical',
agentId: 'cleanup-agent',
context: { accountCount: 5000 },
reversible: false,
});
if (decision.approved) {
await executeAction();
} else {
console.log(`Rejected: ${decision.rejectionReason}`);
}
API Endpoints
| Endpoint | Method | Description |
|---|---|---|
/api/agentos/hitl/approvals | GET/POST | List/create approvals |
/api/agentos/hitl/approvals/:id/approve | POST | Approve action |
/api/agentos/hitl/approvals/:id/reject | POST | Reject action |
/api/agentos/hitl/clarifications | GET/POST | Clarification requests |
/api/agentos/hitl/escalations | GET/POST | Escalation handling |
/api/agentos/hitl/feedback | GET/POST | Feedback collection |
/api/agentos/hitl/stats | GET | HITL statistics |
🆕 Agent Communication Bus (v1.1.0)
Overview
The Agent Communication Bus facilitates structured, asynchronous communication between GMIs within an Agency and across external systems. It provides standardized messaging patterns for multi-agent collaboration.
Architecture
Message Types
type AgentMessageType =
| 'task_delegation' // Assigning work to another agent
| 'status_update' // Progress reports
| 'question' // Queries between agents
| 'answer' // Responses to queries
| 'finding' // Sharing discoveries
| 'decision' // Recording decisions
| 'critique' // Providing feedback
| 'handoff' // Transferring responsibility
| 'alert' // Urgent notifications
| 'proposal' // Suggesting approaches
| 'agreement' // Confirming consensus
| 'disagreement'; // Expressing concerns
Communication Patterns
1. Direct Messaging
Send targeted messages to specific agents:
await commBus.send({
messageId: uuid(),
senderGmiId: 'researcher-gmi-1',
targetGmiIdOrRole: 'analyst-gmi-2',
type: 'finding',
content: 'Discovered significant trend in dataset',
priority: 'high',
});
2. Broadcasting
Send to all agents in an agency:
await commBus.broadcast('agency-alpha', {
type: 'status_update',
content: 'Phase 1 complete, starting Phase 2',
});
3. Request/Response
Query agents and await responses:
const response = await commBus.requestResponse({
targetGmiIdOrRole: 'expert-agent',
type: 'question',
content: 'What is your analysis of the data?',
timeoutMs: 30000,
});
4. Structured Handoffs
Transfer context between agents:
const result = await commBus.handoff('current-agent', 'new-agent', {
taskSummary: 'Data analysis task',
currentState: { progress: 0.5 },
keyFindings: ['Finding 1', 'Finding 2'],
remainingWork: ['Analysis', 'Report'],
memoryReferences: ['rag-doc-1', 'rag-doc-2'],
});
Extension Points
The communication system supports custom channels via extensions:
// Register a distributed channel (e.g., Redis)
extensionManager.registerExtension({
kind: 'communication-channel',
id: 'redis-pubsub',
payload: {
name: 'redis-pubsub',
distributed: true,
initialize: async (config) => { /* ... */ },
send: async (targetId, message) => { /* ... */ },
subscribe: (targetId, handler) => { /* ... */ },
},
});
HNSW Vector Search & GraphRAG Engine
HNSW Vector Store (HnswlibVectorStore)
AgentOS provides an HNSW-based IVectorStore implementation using hnswlib-node (C++ bindings).
This replaces linear-scan cosine similarity with O(log n) approximate nearest neighbor search.
┌─────────────────────────────────────────────────────────┐
│ HnswlibVectorStore │
│ implements IVectorStore │
├─────────────────────────────────────────────────────────┤
│ Collections │
│ ┌─────────────────────┐ ┌─────────────────────┐ │
│ │ Collection "docs" │ │ Collection "memory" │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ HNSW Index │ │ │ │ HNSW Index │ │ │
│ │ │ (hnswlib-node) │ │ │ │ (hnswlib-node) │ │ │
│ │ │ O(log n) search │ │ │ │ O(log n) search │ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ │ ┌─────────────────┐ │ │ ┌─────────────────┐ │ │
│ │ │ Metadata Store │ │ │ │ Metadata Store │ │ │
│ │ │ (in-memory Map) │ │ │ │ (in-memory Map) │ │ │
│ │ └─────────────────┘ │ │ └─────────────────┘ │ │
│ └─────────────────────┘ └─────────────────────┘ │
├─────────────────────────────────────────────────────────┤
│ Post-retrieval: Metadata filtering ($eq, $gt, $in...) │
│ Dynamic index resizing on capacity overflow │
│ Similarity: cosine | euclidean | dotproduct │
└─────────────────────────────────────────────────────────┘
Key characteristics:
- 2-10ms queries at 100K documents (vs 500-2000ms for linear scan)
- In-process, zero infrastructure — runs anywhere Node.js runs
- Dynamic index resizing when document count exceeds capacity
- Full
IVectorStorecontract:upsert,query,delete,createCollection,checkHealth - Optional peer dependency: only loaded when configured as
type: 'hnswlib'
File: packages/agentos/src/rag/implementations/vector_stores/HnswlibVectorStore.ts
GraphRAG Engine (GraphRAGEngine)
TypeScript-native GraphRAG implementation inspired by Microsoft's GraphRAG research. Combines entity extraction, community detection, hierarchical summarization, and dual search modes.
┌─────────────────────────────────────────────────────────────────────┐
│ GraphRAGEngine │
│ implements IGraphRAGEngine │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Ingestion Pipeline │ │
│ │ │ │
│ │ Documents ──► Entity Extraction ──► Deduplication │ │
│ │ (LLM or pattern) (case-insensitive) │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ Graph Construction ──► Community Detection │ │
│ │ (graphology) (Louvain algorithm) │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ Hierarchy Building │ │
│ │ (meta-graph Louvain) │ │
│ │ │ │ │
│ │ ▼ │ │
│ │ Community Summarization │ │
│ │ (LLM-generated) │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │
│ ┌────────────────────────┐ ┌───────────────────────────────────┐ │
│ │ Global Search │ │ Local Search │ │
│ │ │ │ │ │
│ │ Query ──► Embed │ │ Query ──► Embed │ │
│ │ ──► Search │ │ ──► Entity vector search │ │
│ │ community │ │ ──► 1-hop graph expansion │ │
│ │ summaries │ │ ──► Community context │ │
│ │ ──► LLM synth │ │ ──► Augmented context │ │
│ └────────────────────────┘ └───────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Persistence Layer │ │
│ │ sql-storage-adapter (SQLite / PostgreSQL / IndexedDB) │ │
│ │ Tables: entities, relationships, communities, ingested_docs │ │
│ └──────────────────────────────────────────────────────────────┘ │
│ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ Injected Dependencies │ │
│ │ IVectorStore ─ IEmbeddingManager ─ LLMProvider ─ SQL Adapter│ │
│ └──────────────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
Community Detection (Louvain via graphology):
- Build undirected graph of entities (nodes) and relationships (edges)
- Run Louvain algorithm to cluster tightly-connected nodes into communities
- Build hierarchical meta-graph: communities become nodes, cross-community edges become weights
- Run Louvain again at each level for coarser clustering
- LLM generates natural language summary per community
Search Modes:
- Global Search: Queries community summary embeddings, synthesizes answer across matched communities. Best for "What are the main themes?" style questions.
- Local Search: Queries entity embeddings, expands 1-hop via graph traversal, includes community context. Best for "Tell me about X" style questions.
Entity Extraction:
- LLM-driven (when
llmProviderinjected): Structured JSON extraction with entity types and relationships - Pattern-based fallback: Proper noun regex with sentence co-occurrence relationship detection
Files:
packages/agentos/src/rag/graphrag/IGraphRAG.ts— Interfaces and typespackages/agentos/src/rag/graphrag/GraphRAGEngine.ts— Implementation (~1400 lines)packages/agentos/src/rag/graphrag/index.ts— Barrel exports
Dependencies (optional peer):
graphology— Graph data structuregraphology-communities-louvain— Louvain community detectionhnswlib-node— HNSW index for entity/community embedding search
See RAG_MEMORY_CONFIGURATION.md for usage examples and configuration.
Conclusion
AgentOS represents a paradigm shift in how we build and deploy AI agents. By treating agents as adaptive, learning entities with persistent personalities and sophisticated cognitive architectures, we enable a new class of AI applications that truly understand and adapt to their users.
The framework's comprehensive architecture—from the Adaptive Prompt Engine to Multi-Agent Coordination, from Working Memory to the Learning System—provides developers with powerful tools to create intelligent systems that go far beyond traditional chatbots.
Key innovations include:
- Adaptive Prompting: Dynamic, context-aware prompt construction that evolves with each interaction
- Personality Dynamics: Rich personality models that maintain consistency while adapting to context
- Multi-Modal Learning: Comprehensive learning systems that improve from every interaction
- Emergent Intelligence: Multi-agent coordination that produces insights beyond individual capabilities
- Constitutional AI: Principled safety through contextual understanding rather than rigid rules
- Performance Optimization: Intelligent caching, batching, and resource management
- Planning Engine: Autonomous multi-step reasoning with ReAct pattern for complex goal pursuit (v1.1.0)
- Human-in-the-Loop: Structured collaboration between AI agents and human operators (v1.1.0)
- Agent Communication: Asynchronous messaging, broadcasting, and handoffs between agents (v1.1.0)
- RAG Memory Integration: Vector-based knowledge retrieval with cross-platform persistence (v1.0.0)
- HNSW Vector Search: O(log n) approximate nearest neighbor search via hnswlib-node (v1.2.0)
- GraphRAG Engine: TypeScript-native entity extraction, Louvain community detection, hierarchical summarization, and global/local search (v1.2.0)
Whether building specialized expert systems, collaborative multi-agent platforms, or adaptive personal assistants, AgentOS provides the foundation for creating AI agents that are not just tools, but genuine cognitive partners in solving complex problems and enhancing human capabilities.
The future of AI isn't just about more powerful models; it's about more intelligent systems that can learn, adapt, and collaborate. AgentOS provides the architecture, tools, and patterns needed to build this future today.
Welcome to the era of Adaptive Intelligence. Welcome to AgentOS.