Skip to main content

Recursive Self-Building Agents

The Hypothesis

Can an AI agent with only two capabilities—CLI execution and web search/scraping—recursively build anything that humanity can build?

This is a profound question about the minimal viable toolset for artificial general intelligence (AGI). Let me analyze this hypothesis deeply.


The Two Primitives

1. CLI Execution (Code Interpreter)

The ability to:

  • Execute arbitrary shell commands
  • Run code in any language (Python, Node.js, Rust, etc.)
  • Read/write files on the filesystem
  • Install packages and dependencies
  • Start/stop services
  • Query system state
// AgentOS Extension: CLI Tool
interface CLITool extends ITool {
execute(args: {
command: string;
workingDir?: string;
timeout?: number;
env?: Record<string, string>;
}): Promise<{
stdout: string;
stderr: string;
exitCode: number;
}>;
}

2. Web Search + Scraping (Information Gathering)

The ability to:

  • Query search engines (Google, Bing, etc.)
  • Navigate to URLs
  • Extract content from web pages
  • Click links and follow navigation
  • Handle dynamic JavaScript-rendered content
  • Parse structured data (tables, lists, etc.)
// AgentOS Extension: Web Search + Browser
interface WebTool extends ITool {
search(query: string): Promise<SearchResult[]>;
navigate(url: string): Promise<void>;
scrape(selector?: string): Promise<PageContent>;
click(elementRef: string): Promise<void>;
type(elementRef: string, text: string): Promise<void>;
}

Theoretical Analysis: Is This Sufficient?

The Church-Turing Thesis Argument

From a pure computation standpoint:

  1. CLI = Universal Computation: A shell with access to compilers/interpreters can compute anything computable. This is Turing-complete.

  2. Web Search = Universal Knowledge Access: The internet contains (or can generate via queries) essentially all human knowledge ever documented.

  3. Combined = Knowledge + Computation: Together, these provide:

    • Access to all documented procedures (how to do anything)
    • Ability to execute those procedures
    • Feedback loops to verify results

In theory, this is sufficient to build anything that can be specified in natural language.

The Practical Reality

However, several critical gaps exist:

Gap 1: Physical World Interface

❌ Cannot manipulate physical objects
❌ Cannot operate machinery
❌ Cannot perform experiments
❌ Cannot perceive the physical world (without cameras/sensors)

Implication: Can build software, but cannot build hardware or physical artifacts.

Gap 2: Real-Time Interaction

❌ Cannot have real-time voice conversations
❌ Cannot react to dynamic environments
❌ Cannot operate in time-critical scenarios

Implication: Best suited for asynchronous, deliberative tasks.

Gap 3: Security & Access Boundaries

❌ Many systems require authentication
❌ Paywalls block information
❌ Some knowledge is not on the internet
❌ Sensitive operations blocked by sandboxing

Implication: Limited by permissions and access.

Gap 4: Verification & Correctness

⚠️ How do you know the code works?
⚠️ How do you verify factual claims from web?
⚠️ How do you handle conflicting information?
⚠️ How do you detect hallucination vs reality?

Implication: Needs robust evaluation and testing.


✅ Fully Achievable

CategoryExamples
SoftwareWeb apps, APIs, CLI tools, mobile apps
DocumentationTechnical docs, reports, analysis
ResearchLiterature reviews, data analysis
AutomationCI/CD pipelines, scripts, bots
ContentArticles, code tutorials, datasets
InfrastructureCloud deployments, Docker setups

⚠️ Partially Achievable

CategoryLimitation
Hardware DesignCan design, cannot fabricate
Physical ProductsCan spec, cannot manufacture
Scientific ExperimentsCan plan, cannot execute physically
Art/MusicCan generate digital, not physical

❌ Not Achievable

CategoryReason
Physical ConstructionNo robotic arm
Medical ProceduresNo physical intervention
AgricultureNo physical planting/harvesting
TransportationNo vehicle operation

Recursive Self-Improvement: The Meta-Capability

The most powerful aspect of this setup is recursive self-improvement:

┌─────────────────────────────────────────────────────────────────┐
│ Recursive Self-Improvement Loop │
│ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ 1. Identify limitation in current capabilities │ │
│ │ "I can't process images well" │ │
│ └─────────────────────┬───────────────────────────────────┘ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ 2. Search for solutions │ │
│ │ "How to add vision capability to AI agents" │ │
│ └─────────────────────┬───────────────────────────────────┘ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ 3. Write code to implement solution │ │
│ │ pip install openai; integrate vision API │ │
│ └─────────────────────┬───────────────────────────────────┘ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ 4. Test and validate │ │
│ │ Run tests, verify image processing works │ │
│ └─────────────────────┬───────────────────────────────────┘ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────┐ │
│ │ 5. Integrate into self │ │
│ │ Register new tool, update persona │ │
│ └─────────────────────┬───────────────────────────────────┘ │
│ │ │
│ └─────────────► Loop back to 1 │
└─────────────────────────────────────────────────────────────────┘

This is the key insight: With CLI + Web, an agent can:

  1. Discover it needs a new capability
  2. Research how to implement it
  3. Write the code
  4. Test it
  5. Install/enable it for itself

Implementing This in AgentOS

Required Extensions

// 1. CLI Extension (exists as CodeSandbox, needs enhancement)
const cliExtension: ExtensionDefinition = {
id: 'agentos-cli-executor',
name: 'CLI Executor',
kind: 'tool',
tool: {
id: 'cli',
name: 'Command Line Interface',
description: 'Execute shell commands and scripts',
parameters: {
type: 'object',
properties: {
command: { type: 'string', description: 'Shell command to execute' },
workingDir: { type: 'string', description: 'Working directory' },
timeout: { type: 'number', description: 'Timeout in ms' },
},
required: ['command'],
},
execute: async (args) => { /* ... */ },
},
};

// 2. Web Search + Browser Extension (needs implementation)
const webExtension: ExtensionDefinition = {
id: 'agentos-web-browser',
name: 'Web Browser',
kind: 'tool',
tool: {
id: 'web',
name: 'Web Browser',
description: 'Search the web, navigate pages, and extract content',
parameters: {
type: 'object',
properties: {
action: {
type: 'string',
enum: ['search', 'navigate', 'scrape', 'click', 'type'],
},
query: { type: 'string', description: 'Search query' },
url: { type: 'string', description: 'URL to navigate to' },
selector: { type: 'string', description: 'CSS selector' },
},
required: ['action'],
},
execute: async (args) => { /* ... */ },
},
};

Autonomous Loop Configuration

// Configure a self-building agent
const autonomousConfig: AutonomousLoopOptions = {
maxIterations: 100,
goalConfidenceThreshold: 0.95,
selfReflectionFrequency: 5, // Reflect every 5 steps
allowSelfModification: true, // Can modify own tools
requireApprovalFor: [
'install_package', // Human approves new dependencies
'modify_system_config', // Human approves system changes
'network_request_external', // Human approves external API calls
],
onApprovalRequired: async (req) => {
// Human-in-the-loop checkpoint
return await hitlManager.requestApproval(req);
},
};

// Run the autonomous builder
const result = await planningEngine.runAutonomousLoop(
'Build a real-time stock trading dashboard with React and WebSocket',
autonomousConfig,
);

Pros and Cons

Pros ✅

AdvantageExplanation
Minimal PrimitivesOnly 2 core tools needed
Turing CompleteCan compute anything computable
Self-ImprovingCan enhance own capabilities
Knowledge AccessAll documented human knowledge available
ReproducibleEverything is code/commands that can be replayed
AuditableFull trace of actions

Cons ❌

DisadvantageExplanation
Security RiskCLI access is dangerous
Physical LimitCannot affect physical world
LatencyWeb scraping is slow
ReliabilityWeb content changes, sites block scrapers
CostMany searches/scrapes = expensive
Legal IssuesSome scraping violates ToS
Verification GapHard to verify correctness
Hallucination RiskMay generate plausible but wrong code

Critical Safety Considerations

The Recursive Self-Improvement Risk

If an agent can modify its own code and tools, it could:

  1. Remove safety constraints - Disable guardrails
  2. Escalate privileges - Gain more system access
  3. Replicate uncontrollably - Spawn copies of itself
  4. Acquire resources - Use cloud APIs without authorization

Mitigation Strategies

// 1. Immutable Core Guardrails
const IMMUTABLE_GUARDRAILS = [
'no_self_modification_of_guardrails',
'no_credential_exfiltration',
'no_arbitrary_network_access',
'require_human_approval_for_installs',
];

// 2. Sandboxed Execution
const sandboxConfig: SandboxConfig = {
networkAccess: 'restricted', // Whitelist only
fileSystemAccess: 'scoped', // Limited directories
processSpawning: 'monitored', // Log all processes
resourceLimits: {
maxMemoryMB: 4096,
maxCpuPercent: 50,
maxDiskMB: 10240,
},
};

// 3. Human-in-the-Loop Checkpoints
const hitlPolicy = {
requireApprovalFor: [
'install_system_package',
'modify_agent_config',
'external_api_call',
'file_write_outside_workspace',
],
autoRejectPatterns: [
/rm\s+-rf\s+\//, // No recursive root delete
/curl.*\|.*bash/, // No piped script execution
/chmod.*777/, // No world-writable permissions
],
};

My Assessment

Do I Agree With the Hypothesis?

Partially yes, with caveats.

  1. For digital/software creation: Yes, CLI + Web Search is theoretically sufficient. An intelligent enough agent with these tools could build any software, documentation, or digital artifact.

  2. For physical world impact: No, without actuators (robotics, 3D printers, etc.), the agent cannot create physical things directly.

  3. For "everything of humanity": The statement is too broad. Humanity's achievements include physical structures (buildings, bridges), biological advances (medicine, agriculture), and social systems (governments, cultures) that cannot be directly created by software alone.

  4. The "intelligent enough" qualifier: This is doing a lot of heavy lifting. Current LLMs are not intelligent enough for fully autonomous recursive self-improvement. They:

    • Hallucinate
    • Lose coherence over long chains
    • Make logical errors
    • Lack true understanding

What's Actually Achievable Today (2024-2025)

With current LLMs (GPT-4, Claude 3.5, etc.) and these two tools:

AchievabilityExamples
Highly AchievableWrite code, fix bugs, create docs, build web apps
Moderately AchievableComplex multi-step projects, research synthesis
Marginally AchievableSelf-improving tool creation (needs heavy supervision)
Not Yet AchievableFully autonomous recursive self-improvement

Priority 1: Enhanced CLI Tool

  • Full shell access with proper sandboxing
  • Language runtime detection and installation
  • Package manager integration (npm, pip, cargo, etc.)
  • Output streaming for long-running processes
  • Process management (background tasks, kill signals)

Priority 2: Web Browser Extension

  • Google Search API integration
  • Playwright/Puppeteer browser automation
  • Content extraction and parsing
  • Screenshot capability for visual feedback
  • Rate limiting and caching

Priority 3: Recursive Self-Improvement Infrastructure

  • Tool registry with hot-reloading
  • Capability self-assessment
  • Automated testing framework for self-modifications
  • Rollback mechanism for failed self-improvements
  • Confidence scoring for generated code

Priority 4: Safety & Governance

  • Immutable guardrail core
  • Human approval workflows
  • Resource quotas and limits
  • Audit logging
  • Kill switches

Conclusion

The CLI + Web Search hypothesis is directionally correct for digital/software creation. These two primitives provide:

  1. Universal computation (CLI)
  2. Universal knowledge (Web)
  3. Recursive improvement (CLI can modify code, Web finds how)

However, true "building everything of humanity" requires:

  • Physical actuators
  • More reliable reasoning
  • Better verification mechanisms
  • Robust safety guarantees

AgentOS is well-positioned to explore this frontier with its modular architecture, extension system, and human-in-the-loop capabilities.